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The direct-interaction approximation~DIA ! to the fourth-order statisticZ;^(lc2)2&, wherel is a specified
operator andc is a random field, is discussed from several points of view distinct from that of Chenet al.
@Phys. Fluids A1, 1844~1989!#. It is shown that the formula forZDIA already appeared in the seminal work of
Martin, Siggia, and Rose@Phys. Rev. A8, 423 ~1973!# on the functional approach to classical statistical
dynamics. It does not follow from the original generalized Langevin equation~GLE! of Leith @J. Atmos. Sci.
28, 145 ~1971!# and Kraichnan@J. Fluid Mech.41, 189 ~1970!# ~frequently described as an amplitude repre-
sentation for the DIA!, in which the random forcing is realized by a particular superposition of products of
random variables. The relationship of that GLE to renormalized field theories with non-Gaussian corrections
~‘‘spurious vertices’’! is described. It is shown how to derive an improved representation, which realizes
cumulants throughO(c4), by adding to the GLE a particular non-Gaussian correction. A Markovian approxi-
mationZDIA

M to ZDIA is derived. BothZDIA andZDIA
M incorrectly predict a Gaussian kurtosis for the steady state

of a solvable three-mode example.@S1063-651X~96!06705-0#

PACS number~s!: 47.27.Ak, 03.50.2z, 05.40.1j, 52.35.Ra

I. INTRODUCTION

The importance and utility of statistical closure approxi-
mations applied to the nonlinear equations of field theory and
turbulence are by now very well established@1,2#. For poly-
nomial nonlinearities, it was natural early on to seek
moment-based closures@3#. Although usually those are used
to predict second-order statistics, certain of them can predict
higher-order statistics as well. In particular, Chenet al. @4#
used Kraichnan’s random-coupling model~RCM! @5# for his
direct-interaction approximation~DIA ! @6,5# to derive a for-
mula for a general fourth-order statisticZ;^(lc2)2&, where
c is a random field,l is a coupling coefficient that can be
specified arbitrarily, and̂& denotes ensemble average.@The
precise definition ofZ is given by Eq. 2~a! below.# Although
knowledge of statistics up to only fourth order is insufficient
to reconstruct structures in space and therefore to fully char-
acterize intermittent phenomena, third- and fourth-order cu-
mulants are natural and robust measures of the deviation of
the probability density function~PDF! from Gaussian form.
Unfortunately, Chenet al. found that the non-Gaussian cor-
rections to a variety of important fourth-order statistics for
homogeneous, isotropic, incompressible Navier-
Stokes turbulence vanish in the DIA; this led them to argue
for the necessity of closures based on full PDF’s rather than
moments. Shortly thereafter, the theory of ‘‘mapping clo-
sures’’ was invented@7,8#.

Although still in a relatively early stage of development,
mapping closures appear to provide very successful and in-
triguing predictions@9# of a variety of non-Gaussian phe-
nomena difficult to capture with moment closures. They may
become a central analytical tool for studies of intermittency.
Nevertheless, the moment-based approximationZDIA re-
mains of possible interest for situations with a degree of
symmetry lower than that of the canonical three-dimensional
homogeneous, isotropic, incompressible Navier-Stokes prob-
lem. The present work was motivated by problems of fusion
plasma physics, in which the presence of a strong confining

magnetic field introduces a natural anisotropy. In a certain
useful limit, compressible, two-dimensional, anisotropic
fluid models of plasma result@10,11#.

I will describe the application ofZDIA to the analysis of
such models elsewhere. In the present work, whose goal is to
clarify the conceptual foundations ofZDIA , I consider the
possibility of derivingZDIA by routes alternative to the one
based on the RCM. First, I observe in Sec. II that the formula
for ZDIA @Eq. ~36! below# is, in fact, contained in the seminal
paper of Martin, Siggia, and Rose~MSR! @1#, who presented
a renormalized theory of classical statistical dynamics based
on functional manipulations. That work was not cited by
Chenet al., and indeed a close reading of a rather difficult
appendix is required in order to identify the result. Therefore,
I briefly review the MSR formalism, including some discus-
sion of the Bethe-Salpeter equation@12,2# not given explic-
itly by MSR. The formula forZDIA then follows immediately
and elegantly, in a very general form valid for inhomoge-
neous systems~not considered by Chenet al.! and systems
of n coupled fields~a particular kind of ‘‘inhomogeneous’’
situation!. The ease with which the formula emerges demon-
strates the power and beauty of the functional apparatus.

Second, I consider in Sec. III the prediction ofZ made by
the Langevin model of the DIA presented by Leith@13# and
Kraichnan@14#. Chenet al. noted in passing that a general-
ized Langevin equation—schematicallyR21c5b, whereR
~response function! andb ~random nonlinear noise! are de-
fined later—yields the formula forZDIA for the particular
casel5M , whereM is the mode-coupling coefficient for
the quadratic nonlinearity of the original primitive amplitude
equation. The operation that leads to that result—evaluating
the mean square of the terms in the Langevin equation that
represent the nonlinearity—has the advantage that it requires
only the covariance of the random forcingb; however, it
does not immediately generalize to the case of arbitraryl.
An alternative procedure is to average the fourth moment of
the solution of the Langevin equation. That, however, re-
quires the fourth-order cumulant of the non-Gaussianb. The
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original formulation of Kraichnan, in whichb is represented
by a particular superposition of products of random variables
j ~usually taken to be Gaussian!, makes a prediction for that
cumulant; however, it is easy to see that the result is not in
accord with the DIA statistics of fourth order~where ‘‘DIA
statistics’’ aredefinedto be those predicted by the RCM or,
equivalently, by renormalized field theory in the absence of
vertex renormalization!. Indeed, the original Langevin model
fails already at third order. I show how a partial consistency
can be restored by the introduction of a particular non-
Gaussian correctionc0 . In preparation for that discussion, I
briefly review the extensions to the original MSR formalism
required by non-Gaussian forcing, random coefficients,
and/or initial conditions. The Kraichnan model can then be
clearly seen to be compatible with only thesecond-order
statistics of the DIA; it can be derived from a coupledlinear
system in the extended fieldF8(c,ĉ)T of MSR in the limit
of Gaussianb. ~HereT denotes transpose; the interpretation
of the operatorĉ is reviewed in Sec. II.! The goal of repro-
ducing higher-order statistics from a dynamically linear
Langevin model is more problematic. At higher order, which
requires non-Gaussianb, the effective equation of motion
for F is intrinsically nonlinear and it appears to be impos-
sible to determine the higher-order cumulants ofb in a way
that reproduces the complete set of higher-order correlation
and response functions. However, if one is interested in re-
producing only purec cumulants but not higher-order re-
sponse functions, it does appear to be possible, by introduc-
ing c0 andDj8j2c0 , to specify the cross correlations of
c0 with GaussianDj in a way that ensures that statistics
related toc3 and c4 are realized correctly by the model.
Nevertheless, the necessity for a non-Gaussian correction
and, in general, a dynamically nonlinear model vitiates, in
my opinion, the utility and heuristic clarity of the Langevin
representation. Although the Leith-Kraichnan Langevin
equation is physically clear and compelling as a generator of
the DIA equations for second-order statistics, it still appears
that the RCM is the most fundamental amplitude representa-
tion known for the DIA as interpreted to apply to statistics of
all orders.

One application for which the Langevin approach is par-
ticularly well suited is the derivation of Markovian closures.
In Sec. IV, I show the equivalence between a direct Markov-
ian Ansatzapplied toZDIA and a Langevin procedure. The
application of the resulting readily computable formula to
interesting problems in plasma physics will be made else-
where.

Finally, I return in Sec. V to the solvable three-mode
model introduced by Kraichnan@15# and briefly discussed by
Chen et al. The latter authors compared the prediction of
ZDIA for the mean-square nonlinear term with the exact so-
lution of the model; they found reasonable agreement. I com-
pute instead a kurtosis constructed in a natural way from the
amplitudes of the three modes. In steady state, both the DIA
and the Markovian approximation incorrectly predict a van-
ishing non-Gaussian correction, emphasizing the inadequacy
of ZDIA in general.

The body of the paper concludes with a brief discussion in
Sec. VI. The Appendix is devoted to the detailed construc-
tion of the kurtosis statistic in terms of Fourier amplitudes,
both in general and for the solvable model.

II. FOURTH-ORDER STATISTICS FROM
THE MARTIN-SIGGIA-ROSE FORMALISM

Following MSR, let us restrict our attention to quadratic
nonlinearities and consider a field equation of the form

] t1c~1!2U2~1,2!c~2!2 1
2U3~1,2,3!c~2!c~3!5U1~1!.

~1!

Here the argument 1 denotes the complete set of continuous
and/or discrete independent variables, including, for ex-
ample, a space variablex1 , a time variablet1 , and a discrete
field label~‘‘species’’ index! s1; the integration and/or sum-
mation convention for repeated indices is used. The set of all
indices excluding the time will be denoted by underlining the
argument, e.g.,1. For the time being, I take the coupling
coefficientsUi to be statistically sharp; a randomU1 will be
important later. The two-point generalization of the defini-
tion of Chenet al. is the fourth-order statistic

Z~1,1̄,t !8^z~1,t !z~ 1̄,t !&, ~2a!

where

z~1!8l~1,2,3!c~2!c~3! ~2b!

and where8 indicates definition. Herel is an ‘‘external’’
coupling coefficient that can be specified arbitrarily; it
should not be confused with the ‘‘internal’’ nonlinear mode-
coupling coefficientU3[M . I shall takel to be local in
time—l(1,2,3)}d(t12t2)d(t12t3)—although this restric-
tion is not used until the final step of the derivation and can
be easily relaxed if necessary. Clearlyl can be taken to be
symmetric in its last two indices.

The fourth-order moment involved inZ,

P4~2,3,2̄,3̄!8^c~2!c~3!c~ 2̄!c~ 3̄!&, ~3!

has a standard cumulant expansion@16#

P4~1,2,3,4!5^^c~1!&&^^c~2!&&^^c~3!&&^^c~4!&&

1^^c~1!&&^^c~2!&&^^c~3!c~4!&&

1~five permutations!

1^^c~1!&&^^c~2!c~3!c~4!&&

1~ three permutations!

1^^c~1!c~2!&&^^c~3!c~4!&&

1~ two permutations!

1^^c~1!c~2!c~3!c~4!&&. ~4!

Also,

^^c~1!c~2!•••c~n!&&[C~1,2, . . . ,n! ~5!

is the nth-order cumulant; in particular,̂^c&&5^c& and
^^c(1)c(2)&&5^dc(1)dc(2)&[C(1,2), where dc8c
2^c&. I assumê c&50, in which case

P45PG1Pc, ~6!

where
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PG~2,3,2̄,3̄!8C~2,3!C~ 2̄,3̄!1C~2,2!C~3,3̄!

1C~2,3̄!C~3,2̄! ~7!

generalizes the familiar result^c4&53^c2&2 for a univariate
centered Gaussian variablec and wherePc[^^c4&& is the
fourth-order cumulant whose calculation is the goal. Dia-
grammatically, I representl by a solid triangle,c by a
dashed line, the correlation functionC by a wavy line, and
the nth-order cumulant by a box withn dotted legs@Figs.
1~a!–1~d!#. The decompositionZ5ZG1Zc induced by Eq.
~6! is then shown in Fig. 1~e!.

MSR argued that the moment-closure problem for classi-
cal statistical dynamics was best addressed by a symmetrical,
‘‘operator-doubled’’ formalism ~a generalization of
Schwinger’s approach to quantum field theory@17#! that con-
sideredC and the infinitesimal response function

R~1;18!8
d^c~1!&
dh2~18!

U
h250

~8!

@Fig. 1~c!# on equal footing.@Hered/dh2 denotes the func-
tional derivative with respect toh2 , an arbitrary, statistically
sharp source term added to the right-hand side of Eq.~1!.
The significance of the2 subscript will become apparent
shortly.# To that end, they introduced the extended field
F8(c,ĉ)T[(F1 ,F2)

T, where ĉ is an operator that can
be thought of@18# as2d/dc or as a momentum or Fourier-
transform variable in a path-integral representation@19#. Its
relationship toR will be described shortly; see Eq.~17!. At
equal times,c and ĉ obey the canonical commutation rela-
tions

@c~1,t !,ĉ~18,t !#5d~1218! ~9a!

or

@F~1,t !,F~18,t !T#5 isd~1218!, ~9b!

wheres is a 232 matrix in the spinor indices (1,2)

is8S 0 1

21 0D . ~10!

The equation of motion compatible with Eq.~1! is

] t1ĉ~1!1U2~2,1!ĉ~2!1U3~2,3,1!ĉ~2!c~3!50. ~11!

Equations~1! and~11! can be combined@1# into the symmet-
ric vector equation

2 isḞ~1!5g1~1!1g2~1,2!F~2!1 1
2g3~1,2,3!F~2!F~3!,

~12!

where the arguments now include the spinor indices. Here
the nonvanishing elements of the fully symmetric matrices
g i ~‘‘bare vertices’’! have precisely one minus index and are
defined by g12(1)5U1(1), g221(1,2)5U2(1,2), and
g3211(1,2,3)5U3(1,2,3).

In the original paper of MSR, the right-hand side of Eq.
~12! was generated from the commutator ofF with the
Hamiltonian functional

H0~ t1!8ĉ~1!@U1~1!1U2~1,2!c~2!

1 1
2U3~1,2,3!c~2!c~3!], ~13!

wheret1 is not summed over. The generating functional

S8@exp„F~ 1̄!h~ 1̄!…#1 ~14!

was then introduced~whereh is a two-dimensional vector of
statistically sharp functions and the plus subscript denotes
time ordering with later times to the left! and the finite-h
cumulants

Gn
h~1,2, . . . ,n! ~15a!

[^^F~1!F~2!•••F~n!&& ~15b!

5
dnln^S&

dh~1!dh~2!•••dh~n!
~15c!

5
d

dh~n!
Gn
h~1,2, . . . ,n21! ~n.1! ~15d!

defined. The moment hierarchy of many-time correlation and
response functions was then generated by functional deriva-
tives with respect toh of the averaged equation of motion

2 isĠ1
h~1!5g1~1!1h~1!1g2~1,2!G1

h~2!1 1
2g3~1,2,3!

3@G1
h~2!G1

h~3!1G2
h~2,3!#. ~16!

The physical observables~cumulants! are recovered in the
limit h→0; in that limit, Eq.~16! reduces to the average of
Eq. ~12!.

FIG. 1. Diagrammatic representation of theZ statistic.~a! Ex-
ternal coupling coefficientl(1,2,3); ~b! primitive amplitudec; ~c!
correlation functionC(1,18) and infinitesimal response function
R(1;18); ~d! fourth-order cumulant̂ ^c4&&; ~e! decomposition of
Z into a Gaussian partZG and a cumulant partZc.
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The solution of Eq.~12! in terms of time-ordered evolu-
tion operators and the definition of infinitesimal response
functions in terms ofĉ were discussed at length by Rose
@18#. The key technical result is that@18#

R~1;18!5^^c~1!ĉ~18!&&1 . ~17!

The time-ordering convention ensures that any cumulant be-
ginning with ĉ on the left will vanish; as a special case, it
guarantees causality of the infinitesimal response:R(t;t8)
}H(t2t8), whereH is the Heaviside unit step function.
Then the time-ordered two-point correlation matrixG[G2
is built from justC andR:

G~1,2!8^^F~1!F~2!&&15S C~1,2! R~1;2!

R~2;1! 0 D . ~18!

Diagrammatically,G is represented by a heavy solid line
@Fig. 2~a!#. Higher-orderF cumulants have natural physical
interpretations as well. For example,R(1;18,19)
8^^c(1)ĉ(18)ĉ(19)&&1 is the ‘‘two in, one out’’ infinitesi-
mal response function.

More recently, Jensen@19#, following earlier work by Jan-
ssen@20#, DeDominicis@21#, and Phythian@22#, discussed a
path-integral interpretation of the MSR formalism. This ap-
proach permits certain generalizations that are cumbersome
to treat by the MSR techniques as described by Rose@18#.
Jensen showed, for example, that

2 is^^Ḟ~1!&&h5^S&21
dH̄

dF~1!
1h~1!, ~19!

where

H̄8 ln^expH&, ~20a!

H5H01~an initial-condition term!, ~20b!

H08g1~1!F~1!1
1

2!
g2~1,2!F~1!F~2!

1
1

3!
g3~1,2,3!F~1!F~2!F~3!.

~20c!

@In contrast to Eq.~13!, all times are integrated over in Eq.
~20c!.# This approach permits easy consideration of random
vertices and initial conditions. Further discussion of this
point is given in Sec. III B 2.

For now, I continue to consider Gaussian initial condi-
tions and statistically sharp vertices~important restrictions
that are relaxed in Sec. III B 2!. Closure of the hierarchy of
moment equations in terms of the formally exact Dyson
equation forG is effected by changing variables fromh to
Fh ~whereF[G18^F&), best described formally in terms
of Legendre transforms@23,2#. This leads to the natural in-
troduction of the~matrix! three-point renormalized vertex
function

G~1,2,3!82
dG21~1,2!

d^F~3!&
. ~21!

~I now drop theh superscript where no confusion can arise.!
It is readily shown that

G~1,2,3!5G21~1,1̄!G21~2,2̄!G21~3,3̄!G~ 1̄,2̄,3̄!, ~22!

so G is fully symmetric; it is represented diagrammatically
by a large dot, whereas the bare three-point vertexg is rep-
resented by a small dot@Figs. 2~b! and 2~c!#. One finds

G21~1,2!52 is] t1d~122!2g~1,2!2g~1,2,3!^F~3!&

1S~1,2!, ~23!

where@24#

S~1,1̄!52 1
2g~1,2,3!G~2,2̄!G~3,3̄!G~ 1̄,2̄,3̄! ~24!

@Fig. 2~d!#. Finally, an independent equation forG follows
by functional differentiation of the Dyson equation~23!:

G35g32I 4G2G2G3 ~25!

@Fig. 2~e!#, where

I 4~1,2;18,28!8
dS~1,2!

dG~18,28!
U
F

~26!

@Fig. 2~f!#. Renormalized~Eulerian! statistical closures can
now be generated by approximating the interaction kernel
I[I 4 , which can be expressed as a power series inG @25#.
The lowest-order closure

G'g ~27!

@Fig. 2~g!#, is the most common formal definition of Kraich-
nan’s famous DIA, i.e., the DIA omits vertex renormaliza-
tion @5#.

FIG. 2. Diagrammatic representation of the MSR functions.~a!
Correlation matrixG(1,2); ~b! bare vertex functiong(1,2,3); ~c!
renormalized vertex functionG(1,2,3); ~d! mass operatorS(1,2);
~e! vertex equation;~f! interaction kernelI ; ~g! DIA in matrix form;
~h! DIA as two coupled scalar equations forR andC.
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Although expressing all results in terms ofG is often
sufficient, the formulaS52 1

2gGGG is not manifestly sym-
metric. For many purposes, including a discussion of fourth-
order statistics, it is better to use the alternative, manifestly
symmetric representation discussed in Appendix A of Ref.
@1#:

S52 1
2gKg ~28!

@Fig. 3~a!#, whereK, the ‘‘two-particle scattering matrix,’’
obeys the Bethe-Salpeter equation~BSE! @12,2#

K5~GG!s2GGIK, ~29!

where the subscripts denotes symmetrization@Fig. 3~b!#.
Here I represents the intrinsic two-particle interactions, an-
other way of describing the effects of vertex renormalization.
The most symmetric formal way of introducing the various
terms in the BSE is again by means of~two-point! Legendre
transforms@12,2#; however, I shall not review the details
here since I need only the results, already presented by MSR.
The DIA is I'0 orK'(GG)s @Fig. 3~c!#; the next approxi-
mation ~first vertex renormalization! is I'2GGG @Fig.
3~d!#. The up-down connected nature ofI , a signature of
vertex corrections, will be important shortly.

MSR show@their Eq.~A6!# that

G4~1,2,3,4!52@dG2~1,2!/dg2~3,4!#G1
2G2~1,4!G2~2,3!

2G2~1,3!G2~2,4!

1G2~1,1̄!G2~2,2̄!G3~1,2̄,5̄!G2~ 5̄,6!

3G3~ 6̄,3̄,4̄!G2~ 3̄,3!G2~ 4̄,4!,
~30!

the interpretation of which is@1# ‘‘the set of graphs involving
1, 2, 3, 4 that cannot be divided into two parts by cutting a

single line . . . isequal toG4(1,2,3,4) minus the last term in
@Eq. ~30!#.’’ Because those graphs are precisely the vertex
effects not contained in the DIA, it must be true that the last
term of Eq.~30! is ~for G→g) the DIA for G4:

G4,DIA5GGgGgGG ~31!

@Fig. 4~a!# @26#. Therefore, upon recalling Eqs.~2! and ~6!,
one obtains one of the central results of this paper:

ZDIA
c 5lGGgGgGGl, ~32!

where, by definition ofZ as being proportional toc4, the
l ’s fix the outermost spinor indices to be1; internal indices
must be summed over. One may now recall thatg is fully
symmetric, but nonvanishing only when precisely one of its
indices is2. The complete set of diagrams that follow from
Eq. ~32!, taking account of the symmetries ofl and g, is
shown in Fig. 4~b!. It is readily seen that these reproduce the
formula for Zc of Chen et al. More specifically, let
1[$x1 ,s1 ,t1% ~ignoring, e.g., a momentum variable that
would arise, say, in a discussion of Vlasov turbulence!, as-
sume homogeneity in space, and Fourier transform. I use the
convention~compatible with statistical homogeneity!

l~x,y,z!5l̂~y2x,z2x!, ~33a!

where

l̂~r1 ,r2!5(
p,q

exp~ ip–r11 iq–r2!l̂p,q . ~33b!

FIG. 3. Two-particle scattering matrix and the Bethe-Salpeter
equation.~a! Mass operatorS(1,2); ~b! Bethe-Salpeter equation;~c!
DIA; ~d! first vertex renormalization.

FIG. 4. DIA contribution to fourth-order cumulant.~a! G4,DIA ;
~b! ZDIA ; ~c! Fourier transform ofZDIA . Only the first term of~b! is
shown explicitly; the other terms have identical structure.
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With this convention, the complete Fourier transform of
l(x,y,z) is

lk,p,q5dk1p1ql̂p,q , ~34!

wheredk[dk,0 . I use the same convention forM . A conse-

quence is that the three wave vectors entering a vertex must
sum to zero. Upon writing

Rk~s,t;s8,t8!5H~ t2t8!R̂k~s,t;s8,t8! ~35!

@R̂(t8;t8)51, whereasR(t8;t8)51/2#, one then expands Eq.
~32! to

ZDIA, k
c ~s,s̄,t !54(

p,q
a,b

(
p̄, q̄
ā , b̄

(
c8, c̄ 8

H dk,p,q~s,a,b;c8,a8,b8!dk, p̄, q̄* ~ s̄,ā,b̄; c̄8,ā8,b̄8!

3E
0

t

dt8E
0

t

d t̄8R̂p~a,t;a8,t8!Cq~b,t;b8,t8!Ck* ~c8,t8; c̄8, t̄8!R̂p̄
* ~ ā,t;ā8, t̄8!Cq̄

* ~ b̄,t;b̄8, t̄8!

1Fdk,p,q~s,a,b;c8,a8,b8!ck, p̄, q̄* ~ s̄,ā,b̄; c̄8,ā8,b̄8!

3E
0

t

dt8E
0

t8
dt̄8R̂p~a,t;a8,t8!Cq~b,t;b8,t8!R̂k* ~c8,t8; c̄8, t̄8!Cp̄

* ~ ā,t;ā8, t̄8!Cq̄
* ~ b̄,t;b̄8, t̄8!GHJ ~36!

@Fig. 4~c!#, where

ck,p,q~s,a,b;s8,a8,b8!8l~s,k;a,p;b,q!M* ~s8,k;a8,p;b8,q!

5dk1p1ql̂p,q~s,a,b!M̂p,q* ~s8,a8,b8!,

~37a!

dk,p,q~s,a,b;s8,a8,b8!8l~s,k;a,p;b,q!M* ~a8,p;b8,q;s8,k!

5dk1p1ql̂p,q~s,a,b!M̂q,k* ~a8,b8,s8!,

~37b!

and

Ap,q; p̄, q̄
H ~s,s8!8 1

2 @Ap,q; p̄, q̄~s,s8!1Ap̄, q̄;p,q
* ~s8,s!#. ~38!

In lieu of the preceding, relatively advanced discussion
based on the Bethe-Salpeter equation, one may give the fol-
lowing ~equivalent! derivation @27#. One hasG45dG3 /dh
or @upon recalling Eqs.~22! and ~15d!#

G45
d

dh
~GGGG! ~39a!

5G3GGG1GG3GG1GGG3G1GGG
dG

dh
~39b!

~Fig. 5!. Upon considering the expansion ofdG/dh, one con-
cludes that all terms of Eq.~39b! except the first involve the
up-down connected partGGG, hence are absent from the
DIA @26#. ForG'g and with the aid of Eq.~22!, one verifies
that the first term of Eq.~39b! is just formula~31!. In that
same approximation, the first three terms of Eq.~39b! are
well known in quantum field theory; cf. Ref.@28#, Fig. 6.1.1.

The simplicity of the derivations of either Eq.~30! or Eq.
~39b! stems from two features:~i! the nature of cumulants as
functional derivatives and~ii ! the symmetric, matrix nature

of the MSR formalism. Thus one derives the single compact
formula ~32! @first line of Fig. 4~b!#, which expands imme-
diately into Eq.~36! @second line of Fig. 4~b!#. Of course, the
same features lead to the single matrix Dyson equation@1#,
which expands into two coupled scalar equations forC and
R @Fig. 2~h!#; likewise,S has several elements, one describ-
ing @29# emission (2S11), the other~typically! describing
absorption (S21). The presence of bothS11 andS21 is
required in order that energylike conservation theorems can
be maintained.~For a discussion of this well-known point in
the context of plasma physics, see Ref.@30#.!

III. REALIZABLE LANGEVIN MODELS AND THE DIA

Although the DIA can be simply and concisely character-
ized as the absence of vertex renormalization, this does not
in itself imply that the DIA is well behaved. Indeed, soon
after presenting the DIA, Kraichnan described a variety of
‘‘similar’’ renormalized closures that, although graphically
plausible, exhibited badly divergent behavior@5#. He was led
to stress the importance of satisfying the infinity of realiz-
ability inequalities@31# that moments of a PDF must obey. In
particular, he discussed the desirability of finding a stochas-
tic amplitude equation whose statistics precisely reproduce
those of the closure in question~at least through some order!.
An underlying amplitude representation guarantees that a
PDF exists, hence that the closure cannot violate the realiz-

FIG. 5. Contributions toG4 .

4870 53JOHN A. KROMMES



ability inequalities. For example, in a realizable closure co-
variances must remain positive definite.

Kraichnan showed that the DIA is derivable from several
varieties of random-coupling models@32,5,33#, built most
fundamentally from an infinite number of copies of a random
amplitude equation stochastically coupled together in a par-
ticular way @5#. ~Essentially, the mode-coupling coefficient
of the original quadratic nonlinearity is randomized, thus
producing a model dynamical equation cubically nonlinear in
stochastic variables.! Chen et al. used the RCM to derive
their result forZDIA .

A. The standard Langevin model for the DIA

Some time after the original RCM was presented, a
Langevin representation for the two-point Dyson equations
of the DIA was demonstrated by Leith@13# and Kraichnan
@14#. For the specific, Fourier-transformed amplitude equa-
tion

]ck

]t
1nkck5

1
2(

D
M k,p,qcp*cq*1hk , ~40!

wherenk represents linear physics and(D denotes the sum
over allp andq such thatk1p1q50, Kraichnan’s original
form of the Langevin equation was

~] t1nk1Sk! !ck[Rk
21ck ~41a!

5 1
2(

D
M k ,p,qjp* ~ t !jq* ~ t !1hk , ~41b!

whereSk is the nonlinear damping termS21 appearing in
the DIA, ! denotes convolution in time, andj is a random
variable ~not necessarily Gaussian, but independent ofc)
whose covariance is fixed to be that ofc itself. It is readily
shown that the second-order statistics of this amplitude rep-
resentation coincide with those of the DIA. To review the
argument, one first notes that the result

R21
dc~ t !

dh~ t8!
5d~ t2t8! ~42!

(j is independent ofh, since it is independent ofch) guar-
antees that the infinitesimal response function of the model is
that of the DIA. Next, the covariance equation is formed and
shown to agree with that of the DIA. Specifically, upon writ-
ing the solutionc5R( 12Mjj), shown diagrammatically in
Fig. 6~b!, one finds

C~1,18!5R~1;1̄!F~ 1̄,18!R~18;1̄8!, ~43a!

where

F~1,1̄!8 1
2M ~1,2,3!M ~ 1̄,2̄,3̄!C~2,2̄!C~3,3̄!; ~43b!

this is the familiar spectral balance equation for the DIA
covariance@2# @Fig. 2~h!#.

At this point one must distinguish between two possible
interpretations of the ‘‘DIA’’: either ~i! the two familiar
coupled equations forR andC ~second-order statistics! or
~ii ! the renormalized closure that neglects vertex renormal-
ization. The latter interpretation is clearly the more general;
it admits the calculations of higher-order statistics, as we
have seen. However, while the Langevin model~41b! suc-
cessfully reproduces the second-order statistics of the DIA, it
doesnotdo so for higher-order ones. The difficulty is already
present at third order~see Sec. III D below!, but to make
immediate contact with the previous calculations, I consider
the fourth order and calculateZ from Eq.~41b!. This is easy
to do diagrammatically; see Fig. 7. The first two diagrams
reduce, with the aid of the spectral balance equation~43!, to
the Gaussian contributions toZ; however, the last two dia-
grams arenot equivalent to Eq.~32!. Indeed, the presence of
up-down correlations, or the fact that two horizontal lines
must be cut to bisect the graphs, identifies the last two dia-
grams as stemming from vertex corrections omitted in the
DIA. ~There are other such vertex corrections of the same
order that the present Langevin model does not predict.!

The failure of Eq.~41b! to successfully reproduce a speci-
fied set of higher-order statistics is not surprising, since it
was constructed with realizability of only the second-order
statistics of the DIA in mind. Indeed, the PDF ofc;Mj2 is
a generalizedx2 distribution—non-Gaussian, to be sure, but

FIG. 6. Original Langevin representation forc. ~a! Auxiliary
field j; ~b! Langevin representation.

FIG. 7. Calculation ofZ from the original Langevin representa-
tion. The first two diagrams represent the Gaussian contribution; the
last two represent vertex corrections omitted in the DIA.
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not the infinitely richer non-Gaussian PDF compatible with
the DIA statistics through all orders@34#.

Chenet al. discussed a more general form of the Lange-
vin model,

R21c5b, ~44!

in which the covariance of the random forcingb is con-
strained to be

^b~1!b~2!&5F~1,2!, ~45!

but is not required to be of product form. As discussed in
Sec. I, they showed that the mean square of the terms in Eq.
~44! that represent the nonlinearity~i.e., b2S!c) repro-
duces formula~32! for the special casel5M . This is an
important and necessary consistency check. However, they
did not attempt a Langevin-based calculation ofZDIA for
arbitraryl.

B. Generalized Langevin models, non-Gaussian statistics,
and effective equations of motion

I shall now discuss the possibility of generalizing the
Langevin model in such a way that higher-order statistics of
the DIA are predicted correctly. The attempt will not be en-
tirely successful, although it is instructive. The remainder of
Sec. III is rather technical; readers can skip, without loss of
continuity, directly to Sec. IV if they desire.

1. A non-Gaussian correction

It is useful to retain a nonlinear term of the product form
~41b! because of its heuristic appeal. However, it is easy to
verify that such a term will not by itself generate the proper
higher-order statistics. To correct for the difference in non-
Gaussian statistics, I introduce a new non-Gaussian random
variable c0 , statistically dependent onj and satisfying
^c0&50, and write

c5c01R@ 1
2M ~j2c0!~j2c0!# ~46a!

or, with Dc8c2c0 andDj8j2c0 ,

R21Dc5 1
2MDjDj. ~46b!

Here R is again the response function of the DIA. I now
redefine the model such thatDj ~not j) is Gaussian with
covariance fixed to that ofc ~not Dc). The statistical prop-
erties ofc0 are to be determined. That a representation of the
form ~46a! ~i.e., c being the sum of two non-Gaussian ran-
dom variables! is possible is guaranteed if the statistical clo-
sure is realizable; one is thus fortunate in being aware of the
RCM, which guarantees realizability of the DIA statistics
through all orders.

The utility of the added freedom afforded byc0 is appar-
ent upon considering the evaluation of̂c4&5^(c0
1R1

2MDj2)4&, which involves various mixed cumulants
such aŝ ^c0Dj&&, ^^c0Dj3&&, and^^c0

2Dj2&&. One can at-
tempt to assign consistent values to thec0–Dj cumulants in
a way such that DIA statistics involvingcn (n< a fixed
number such as 4! are reproduced~and also that the appro-
priate realizability inequalities are satisfied!. However, there

is also the question of whether the higher-order response
functions~cumulants involving at least oneĉ) are properly
dealt with. The most systematic way of treating all of these
issues is to employ the non-Gaussian version of the MSR
formalism. I describe that briefly in the next section.

2. Non-Gaussian effects in the MSR formalism

The original work of MSR dealt only with Gaussian ini-
tial conditions ~that restriction is perhaps not obvious, but
see the paragraph just before Sec. III of Ref.@1#! and statis-
tically sharp coupling coefficients. Modifications for non-
Gaussian initial conditions and random coefficients were de-
scribed by Rose@18#, Deker and Haake@23#, Phythian@35#,
Deker @36#, and Jensen@19#. Jensen’s work is perhaps the
most general; it embraces not only random initial conditions
but also random coupling coefficients of arbitrary order.
Rose @37# proposed an efficiently computable closure in
which the full time-history integrals of the DIA were re-
placed by truncated ones that explicitly allowed for non-
Gaussian effects.

The original Langevin representation of the DIA provides
a simple example of a random, non-Gaussian coupling coef-
ficient. One can write Eq.~41b! in the form

] t1c~1!2U2~1,2!c~2!5h~1!1Ũ1~1!, ~47!

where

U2~1,2!52@n~1,2!d~ t12t2!1S~1,2!# ~48a!

describes both linear effects and the mean nonlinear damp-
ing, and

Ũ1~1!8 1
2U3~1,2,3!j~2!j~3![b. ~48b!

Equation~47! has no term dynamically nonlinear inc; the
effect of the nonlinearity has been replaced by the random
~non-Gaussian! forcing Ũ1(1). It is anexample of a stochas-
tic differential equation driven by non-Gaussian noise.

Generalizing earlier work of Rose@18#, Jensen@19#
showed that for randomU1 the Hamiltonian functional~20a!
becomes

H̄5H̄01^C $ĉ%&, ~49!

where the cumulant functionalC is given by

C $ĉ%8 (
n51

`
1

n!
ĉ~1!•••ĉ~n!Un

~0!~1, . . . ,n! ~50!

and the ‘‘spurious vertices’’@18# ~denoted by the superscript
0! are

Un
~0!~1, . . . ,n!8^^Ũ1~1!•••Ũ1~n!&&. ~51!

This results in a modified equation of motion derivable from
Eq. ~12! by replacing@18# gn→gn1Gn

(0) , whereGn
(0) is non-

vanishing only when all of its spinor indices are2 ~in which
case its value isUn

(0) , thenth cumulant ofŨ1).
The specific equation of motion that follows from Eq.

~47! ~for which gn>3[0) is
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2 isĠ1
h~1!5h~1!1G1

~0!~1!1@g2~1,2!1G2
~0!~1,2!#G1

h~2!1
1

2!
G3

~0!~1,2,3!@G1
h~2!G1

h~3!1G2
h~2,3!#1

1

3!
G4

~0!~1,2,3,4!

3@G1
h~2!G1

h~3!G1
h~4!13G1

h~2!G2
h~3,4!1G3

h~2,3,4!#1
1

4!
G5

~0!~1,2,3,4,5!@G1
h~2!G1

h~3!G1
h~4!G1

h~5!

16G1
h~2!G1

h~3!G2
h~4,5!14G1

h~2!G3
h~3,4,5!13G2

h~2,3!G2
h~4,5!1G4

h~2,3,4,5!#1O~G6
~0!!, ~52!

where the complete symmetry ofGn
(0) was used to combine some terms. The facts that theG (0) have only2 indices and that

cumulants with all2 indices vanish identically forh50 mean that the equation for the mean field is

2 is^Ḟ~1!&2g2~1,2!^F~2!&5S 0

^b&D . ~53!

I shall takê b&50, so consistentlŷc&50. Higher-order cumulants follow in the usual way by functional differentiation of Eq.
~52!. The covariance obeys

2 isĠ2
h~1,18!5d~1218!1@g2~1,2!1G2

~0!~1,2!#G2
h~2,18!1

1

2!
G3

~0!~1,2,3!@2G1
h~2!G2

h~3,18!1G3
h~2,3,18!#1

1

3!
G4

~0!~1,2,3,4!

3@3G1
h~2!G1

h~3!G2
h~4,18!13G2

h~2,3!G2
h~4,18!13G1

h~2!G3
h~3,4,18!1G4

h~2,3,4,18!#1
1

4!
G5

~0!~1,2,3,4,5!

3@4G1
h~2!G1

h~3!G1
h~4!G2

h~5,18!16G1
h~2!G1

h~3!G3
h~4,5,18!14G1

h~2!G4
h~3,4,5,18!14G2

h~2,18!G3
h~3,4,5!

16G2
h~2,3!G3

h~4,5,18!1G5
h~2,3,4,5,18!#1O~G6

~0!!. ~54!

Upon settingh50, one finds that the physical covariance matrix obeys

2 isĠ2~1,18!5d~1218!1@g2~1,2!1G2
~0!~1,2!#G2~2,18!1

1

2!
G3

~0!~1,2,3!G3~2,3,18!1
1

3!
G4

~0!~1,2,3,4!G4~2,3,4,18!

1
1

4!
G5

~0!~1,2,3,4,5!G5~2,3,4,5,18!1O~G6
~0!!. ~55!

Upon recalling Eqs.~48!, one finds that the (2,2) compo-
nent of Eq.~55! is

]

]t
R1~n1S! !R5d~ t2t8! ~56a!

and the (2,1) component is

]

]t
C1~n1S! !C5^^bb&&RTr1D2 , ~56b!

where

D2~1,18!8 (
n53

`
1

~n21!!
Un

~0!

3~1, . . . ,n!Gn2, . . . ,21~2, . . . ,n,18!. ~57!

The system~56! obviously reproduces the usual two-point
DIA equations if the covariance ofb is chosen according to
Eq. ~45! and if

D2[0. ~58!

For Gaussianb, Un>3
(0) 50 and the constraint~58! is auto-

matically satisfied.
For the Gaussian case, Eqs.~56! follow from the effective

equation of motion

2 isḞ2~g21G2
~0!!F5h ~59!

or, in particular, forh50,

ċ1~n1S! !c5^^bb&&ĉ, ~60a!

ċ̂1~n*1S†! !ĉ50, ~60b!

a coupledlinear system. This is the dynamical linearity of
the original Langevin representation seen in another guise.

For non-Gaussianb, linearity is lost, since higher-order
statistics are required. An effective equation of motion that
includes the effect of the third-order cumulant is

2 isḞ2~g21G2
~0!!F2 1

2G3
~0!FF5h ~61!

or, for h50,

ċ1~n1S! !c5^^bb&&ĉ1 1
2 ^^bbb&&ĉĉ, ~62!
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along with Eq.~60b!. The nonlinear structure of this coupled
system is qualitatively different from the previous linear one.

It would appear that the nonlinearity inherent with non-
Gaussianb precludes a linear Langevin model of the form
R21c5b that will faithfully reproduce all DIA correlation
and response functions through any given order higher than
second. Difficulty arises from the constraint~58! and from
additional constraints to be identified shortly. The linear re-
lation c5Rbmeans@from Eqs.~48b! and ~51!# that

Un
~0!~1, . . . ,n!5~R21!n^^c~1! . . .c~n!&&. ~63!

Constraints such as~58! thus relate products of correlation
and response functions of different orders, but in a way that
does not appear to be compatible with the dynamics of the
DIA itself.

A further example of such constraints emerges from the
equation forG3 that follows from Eq.~54!. Upon again re-
calling thatGn

(0) has all2 indices, one finds forh50

2 isĠ3~1,18,19!5~g21G2
~0!!~1,2!G3~2,18,19!1 1

2G3
~0!~1,2,3!@2G2~2,18!G2~3,19!1G4~2,3,18,19!#

1
1

3!
G4

~0!~1,2,3,4!@3G2~2,18!G3~3,4,19!13G2~2,19!G3~3,4,18!1G5~2,3,4,18,19!#

1
1

4!
G5

~0!~1,2,3,4,5!@4G2~2,18!G4~3,4,5,19!14G2~2,19!G4~3,4,5,18!16G3~2,3,18!G3~4,5,19!

16G2~2,3!G4~4,5,18,19!1G6~2,3,4,5,18,19!#1O~G6
~0!!. ~64!

The predictions of this equation must be compatible with
the already-known DIA result@see Eqs.~22! and ~27!#

G35G2G2G2g ~65!

@Fig. 8~a!#. This sets values for the three independent third-
order cumulantsG3111 , G3112 , andG3122 @Fig. 8~b!#;
recall that G3222 vanishes identically. The appropriate
components of Eq.~64! lead, with the aid of the already
determined result~45!, to equations that are compatible with
Eq. ~65! only if new constraints on theGn

(0) are satisfied. I
will not write those out in detail, but again it does not appear
that they are compatible with the dynamics of the DIA.

One concludes, then, that a linear Langevin model of the
form R21c5b is too simplistic to capture all features of the
DIA ~i.e., statistics of both fluctuations and response through
all orders!, no matter what the statistical distribution ofb is.
However, one may pose the restricted question of whether an
appropriate representation ofb can reproduce purec statis-
tics through a given order. This question can be answered in
the affirmative, since one knows from the RCM that the DIA
statistics are realizable and in the linear Langevin model one
has b}c. In the following section, I comment briefly on
how the representation~46! can be used to efficiently deter-
mine Langevin constraints compatible with low-order DIA
statistics.

C. Second-order statistics

Although we are ultimately interested in fourth-order sta-
tistics, it is useful to illustrate the formalism and to derive
some necessary results by first considering the second- and
third-order statistics ofc, given the decomposition~46!.
Upon denotingc0 by a dashed line, one can represent Eq.
~46a! by Fig. 9~a!. One has

^cc&5^c0c0&1^c0~R
1
2MDjDj!&1^~R1

2MDjDj!c0&

1^~R1
2MDjDj!~R1

2MDjDj!& ~66!

@Fig. 9~b!#. It is convenient to normalizec0 such that

^c0c0&5^cc&[C. ~67!

The sum of the last three terms on the right-hand side of Eq.
~66! must therefore vanish; this provides a constraint on the
third-order multivariate statistics ofc0 andDj:

FIG. 8. Third-order cumulants in the DIA.~a! Exact expression
G35GGGG and its DIA approximationG3'GGGg; ~b! nonvan-
ishing components ofG3 in the DIA.
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^c0~1!~R1
2MDjDj!~18!&1~1↔18!52C~1,18!,

~68!

where the right-hand side follows from the definition of the
model @see discussion after Eq.~46b!#, so that the last term
of Eq. ~66! evaluates to the right-hand side of the spectral
balance equation~43a!. It is typical of this kind of order-by-
order constructive approach that constraints at a given order
need not fully determine the cross correlations betweenc0
andDj. Thus Eq.~68! determines only a contraction~with
M ) of ^c0DjDj&. Later, I will argue that at fourth order one
will require the more detailed condition

^c0~1!Dj~2!Dj~3!&52 1
2R~1;1̄!M ~ 1̄,2̄,3̄!C~ 2̄,2!C~ 3̄,3!;

~69!

see the discussion of Eq.~77!. This satisfies Eq.~68! because
of the spectral balance equation~43!.

The argument thus far has not determined^c0Dj&. Let us
demand that

^cDj&5C. ~70!

Upon multiplying Eq.~46a! by Dj, averaging, and recalling
thatDj is Gaussian, one therefore obtains the constraint

^c0Dj&5C. ~71!

As a check, the second-order realizability inequalities for
c0 andDj should be satisfied. These reduce to the statement

that the covariance matrix should be positive semidefinite.
Explicitly, with the aid of Eqs.~67! and ~71!, one finds

K S c0

Dj D ~c0 Dj!L 5S ^c0
2& ^c0Dj&

^Djc0& ^Dj2& D ~72a!

5S C C

C CD . ~72b!

Clearly the realizability inequality is marginally satisfied.
The constraints deduced so far are diagrammed in Fig.

9~c!.

D. Third-order statistics

One can now proceed to third order. One has schemati-
cally

^c3&5^c0
3&13^c0

2~R1
2MDjDj!&13^c0~R

1
2MDjDj!2&

1^~R1
2MDjDj!3&. ~73!

Let us choose

^c0Dj4&50. ~74!

This turns out to be adequate for calculating statistics up to
fourth order. Equation~73! is represented diagrammatically
in Figs. 10 and 11. Those diagrams are to be compared with

FIG. 9. ~a! Diagrammatic representation of the decomposition
c5c01R1

2MDjDj @Eq. ~46a!# ~in contrast to Fig. 6, the dotted
line now stands forDj); ~b! associated covariance;~c! constraints
through second order.

FIG. 10. Third-order cumulant of the decomposition~46!: all
possible graphs.
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those of the DIA, which at third order readG35GGGg or
^ccc&5RMCC1(two permutations)@Figs. 8 and 12~a!#.
One can achieve agreement by choosing

^c0
3&52^~R1

2MDjDj!3& ~75a!

and

^^c0c0DjDj&&50. ~75b!

The constraints deduced at this order are graphed in Fig.
12~b!.

E. Fourth-order statistics

Finally, at fourth order one has

^c4&5^c0
4&14^c0

3~R1
2MDjDj!&16^c0

2~R1
2MDjDj!2&

14^c0~R
1
2MDjDj!3&1^~R1

2MDjDj!4&. ~76!

Evaluation of the ensemble averages leads to a somewhat
tedious proliferation of diagrams, representative ones of
which are shown in Fig. 13. The first three terms of Fig.
13~a! are, of course, the Gaussian contributions to^c4&. It
can be verified that the remaining disconnected diagrams@an
example is shown in Fig. 13~b!# sum to zero upon invoking
Eq. ~69! and the spectral balance equation~43!. The class of
~horizontally aligned! terms that can be bisected by a single
vertical cut is obviously related to the desired result@Fig.
4~b!# for ^^c4&&DIA . Of those terms, the ones involving
^c0Dj3& @cf. Fig. 13~c!# will reproduce the first group of
terms in Fig. 4~b! if

^c0~1!Dj~2!M ~3,4,5!Dj~4!Dj~5!&

5C~1,4!C~2,5!M ~3,4,5!. ~77!

The remaining horizontal terms, involvinĝc0
2Dj& @cf. Fig.

13~d!#, reproduce the second group of terms in Fig. 4~b! if

^c0~2!c0~2!Dj~3!&5C~1,1̄!C~2,2̄!M ~ 1̄,2̄,3̄!R~3,3̄!.

~78!

@Recall the discussion of Eq.~69!.#
Not shown in Fig. 13 are diagrams that stem from the

original Langevin model withc050. The freedom afforded

FIG. 12. ~a! Contribution 1
2M ^c3& to the covariance equation;

~b! a consistent choice of cumulants.

FIG. 13. Representative diagrams arising from the fourth-order
average of the decomposition~46!. ~a! Expansion of^c0

4& into
Gaussian and cumulant contributions;~b! example of a discon-
nected diagram;~c! typical term arising from̂ c0Dj3&; ~d! typical
term arising from^c0

2Dj&.

FIG. 11. Average of Fig. 10.
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by the presence ofc0 is now crucial, as one can choose
^^c0

4&& to cancel the unwanted terms. I do not present the
details.

At this point, a variety of constraints on the cumulants of
c0 andDj have been deduced. In principle, it is necessary to
verify that the relevant realizability inequalities are satisfied;
this has not been done beyond second order. However, as
remarked earlier, the freedom afforded by the addition of
c0 means that a construction of this type is guaranteed to
exist, since the DIA is itself realizable through all orders due
to the existence of the RCM.

This kind of construction guarantees that the linear
Langevin equation augmented with an additive non-Gaussian
correction will succeed in reproducingc statistics through
fourth order. However, as discussed in Sec. III B 2, such a
dynamically linear construction appears to be incapable of
reproducing higher-order response functions such as
R(1;18,19).

IV. MARKOVIAN APPROXIMATIONS TO ZDIA

I now discuss approximate evaluations of Eq.~32!. Com-
putationally, the principal~and well-known! drawback of the
DIA is the necessity of evaluating the time-history integrals.
Various parametrizations of the two-time observables have
been suggested; for a single field variable, one simple and
frequently used one is

Rk~ t;t8!'H~ t2t8!expS 2E
t8

t

d t̄hk~ t̄ ! D , ~79a!

Ck~ t,t8!'R̂k~ t;t8!Ck~ t,t ! ~ t>t8!. ~79b!

The latter approximation is the fluctuation-dissipation~FD!
Ansatz, known to be exact in thermal equilibrium@38#. Mar-
kovian approximations to the equal-time statistics can be ob-
tained by inserting theseAnsätze into the DIA equations.
However, a well-known@39# difficulty with this procedure is
that the resulting equation forhk need not be realizable.
@This deficiency is related to the fact that, although the triad
interaction timeuk ,p,q defined in the next paragraph~fully
symmetric ink, p, andq) appears correctly in the covariance
equation, the asymmetric construction (hp1hq)

21 appears
in the equation forhk .# Instead, it is better to generate the
Markovian approximation from a Langevin amplitude equa-
tion, thereby ensuring realizability.

Kraichnan@40# showed that for single-field problems with
Hermitian ~real! linear dampingnk , a realizable Markovian
approximation to the second-order statistics can be generated
from the Langevin equation@13#

]ck

]t
1hk~ t !ck5

1

A2
w~ t !(

D
M k,p,qAReuk,p,q~ t !jp* ~ t !jq* ~ t !

~80a!

8 f k~ t !, ~80b!

wherew(t) is Gaussian white noise with unit strength,j is
interpreted in the same way as in Eq.~41b!, anduk,p,q is the
triad interaction time

uk,p,q~ t !8E
0

t

dt8R̂k~ t;t8!R̂p~ t;t8!R̂q~ t;t8! ~81a!

→
t→`

@hk~`!1hp~`!1hq~`!#21.
~81b!

Here

hk8nk1ĥk , ~82!

ĥk being nonlinear damping that is specified in Eq.~87! be-
low. In Eq. ~80a!, the Re operator is superfluous because of
the restriction to Hermitian linear damping. I retain complex
u in order to define a natural@although problematic; see the
paragraph after Eq.~87!# generalization.

In order to determine anĥk compatible with Eq.~80a!,
note that one has

^ f k~ t ! f k* ~ t8!&52Fk~ t !d~ t2t8!, ~83!

where

Fk~ t !8 1
2(

D
uM k,p,qu2Reuk,p,qCp~ t !Cq~ t !. ~84!

Thus

^ f k~ t !ck* ~ t8!&5E
2`

t8
dt̄^ f k~ t !R̂k~ t8; t̄ ! f k* ~ t̄ !& ~85a!

5H 0 ~ t.t8!

Fk~ t ! ~ t5t8!.
~85b!

The t.t8 part of this result guarantees that a fluctuation-
dissipation relation holds. Thet5t8 result leads to the spec-
tral evolution equation

]

]t
Ck12~Rehk!Ck52Fk , ~86!

from which it follows that quadratic invariants of the primi-
tive equation are conserved by the nonlinear terms if

ĥk52(
D

M k,p,qMp,q,k* uk,p,q* Cq~ t !. ~87!

Equations~87!, ~84!, and ~86! define the so-called ‘‘DIA-
based EDQNM’’ approximation@41,42#, henceforth called
simply EDQNM ~where EDQNM stands for eddy-damped
quasinormal Markovian!. Bowman @41# has reviewed the
history of this approximation in detail.

In the presence of linear waves (ImnkÞ0), Bowman
@41,42# demonstrated that the transient evolution described
by the EDQNM is nonrealizable, possibly precluding the
achievement of a realizable steady state. He showed that a
realizable Markovian closure~RMC! can be developed if a
particular symmetrical form of the fluctuation-dissipation re-
lation is employed. The RMC is constructed to approach
asymptotically the steady-state spectral intensities of the
EDQNM. Predictions of the RMC have been compared suc-
cessfully to direct numerical simulations of three-wave mod-
els @41,42#, Hasegawa-Mima@10# dynamics @43,44#, and
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Hasegawa-Wakatani@11# dynamics @45,46#. The resulting
h ’s andCk’s can be used in conjunction with Eq.~79b! to
estimateZc according to Eq.~36!.

The formula for the Markovian approximation to the
steady-stateZc can be derived in two ways:~i! by inserting
the form ~79b! directly into Eq.~36! and evaluating the re-
sulting integrals and~ii ! by noting that the Langevin equation
~80b! follows from representation~41b! when theM of the
latter is replaced by

M→A2uwM. ~88!

The two derivations are almost identical. I restrict my atten-
tion to single-field problems. Considering first procedure~i!,
I introduce the variablest8t2t8 andt̄8t2 t̄8 and write the
steady-state form of Eq.~36! as

ZDIA, k
c~1! 54(

p,q
(
p̄, q̄

$dk,p,qdk, p̄, q̄* I 1~k;p,q;p̄,q̄!

1@dk,p,qck, p̄, q̄* I 2* ~k,p̄,q̄;p,q!#H%, ~89!

where

I 1~k;p,q;p̄,q̄!8E
0

`

dtE
0

`

dt̄ R̂p~t!Cq~t!

3Ck~t2 t̄ !R̂p̄
* ~ t̄ !Cq̄

* ~ t̄ !,
~90a!

I 2~k;p,q;p̄,q̄!8E
0

`

dtE
0

t

dt̄ Cp~t!Cq~t!

3R̂k~t2 t̄ !R̂p̄
* ~ t̄ !Cq̄

* ~ t̄ !.
~90b!

Upon introducing the FDAnsatz, one finds

I 2~k;p,q;p̄,q̄!5CqCpCq̄ Î 2~k;p,q;p̄,q̄!, ~91!

whereCp[Cp(t50) is the steady-state intensity and

Î 2~k;p,q;p̄,q̄!8E
0

`

dtE
0

t

dt̄ R̂p~t!R̂q~t!

3R̂k~t2 t̄ !R̂p̄
* ~ t̄ !R̂q̄

* ~ t̄ !. ~92!

Upon writing*0
`dt̄5*0

tdt̄1*t
`dt̄ and reversing the order of

integration in the second term, one also finds

I 1~k;p,q;p̄,q̄!5CqCkCq̄ @ Î 2~k;p,q;p̄,q̄!1 Î 2* ~k;p̄,q̄;p,q!#.

~93!

Then

ZDIA, k
c~1! 54(

p,q
(
p̄, q̄

CqCq̄ Re@~2dk,p,qdk, p̄, q̄* Ck

1dk,p,qck, p̄, q̄* Cp̄! Î 2~k;p,q;p̄,q̄!#. ~94!

This formula holds for any steady-state DIA solution with a
FD relation. For the specific parametrizationR̂k(t)
5exp(2hkt), one readily finds

Î 2~k;p,q;p̄,q̄!5uk,p,q /Dh, ~95!

where

Dh8hp1hq1h p̄
*1h q̄

* . ~96!

Formula~94! will be evaluated for a special solvable model
in Sec. V.

Turning now to procedure~ii !, the modification~88! of
the bare vertex function~mode-coupling coefficient! can be
used to define a Markovian Langevin model for higher-order
statistics in the same way as in Sec. III. If one does so, the
diagrammatic analysis of Sec. III goes through unchanged
@with the new interpretation~88! for the vertices#; one is led
to a formula like ~36!, except that extra factors ofA2uw
appear inside the time integrals~one evaluated att8, one at

t̄ 8) and the average over the white noise must be performed.
That average produces the factord( t̄2 t̄8)5d(t2 t̄ ). What
results for the steady state is

ZDIA, k
c~2! 54(

p,q
(
p̄, q̄

2Auk,p,qAuk, p̄,q$dk,p,qdk, p̄, q̄* I 18~k;p,q;p̄,q̄!

1@dk,p,qck, p̄, q̄* I 28~k;p̄,q̄;p,q!#H%, ~97!

where I i8 are the integralsI i with the terms with argument
t2 t̄ replaced by a delta function of that argument. One
readily finds

Î 185Dh21, Î 285~2Dh!21 ~98!

~the factor of 1/2 inÎ 2 arises from integrating the delta func-
tion over half of its support!. This leads to a formula that is
identical to~89! with Eqs.~91! and~95!, except thatuk,p,q is
replaced byAuk,p,qAuk, p̄, q̄. The formulas are identical when
only a single triad interaction time is relevant, as in the three-
mode model discussed in Sec. V.

For problems with multiple coupled fields, the derivation
of realizable Markovian closures is more intricate. The dif-
ficulties and various remedies are described in detail by
Bowman@41# and Bowmanet al. @42#.

V. FOURTH-ORDER STATISTICS FOR SYSTEMS
OF THREE COUPLED MODES

The study of simple nonlinear models that nevertheless
retain the essence of the statistical closure problem has been
very profitable @5,2#. Kraichnan @15# considered a simple
system of three coupled modes in order to compare the per-
formance of the DIA~for second-order statistics! with exact
ensemble-averaged solutions of the equations of motion.
Krommes@47# extended that work to include linear forcing
and damping; see also Ref.@42#. Kraichnan also discussed a
degenerate case of the three-mode problem that could be
fully solved analytically, both for the exact equations and for
the DIA. Further results on that solvable case were given by
Bowmanet al. @41,42#. Chenet al. discussed the prediction
of ZDIA for the mean-square nonlinearity.
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Here, I briefly consider for pedagogical purposes a slight
variant of Kraichnan’s solvable three-mode model that pro-
vides a simple example of the development of non-Gaussian
kurtosis from Gaussian initial conditions and allows an illus-
trative test of the DIA and Markovian formulas forZc. The
fundamental equation of motion for three fields labeled by
K, P, andQ is taken to be

ċK5MKcP*cQ* , ~99!

with two similar equations for the cyclic permutations
K→P→Q→K. @Equation~99! is compatible with the fun-
damental mode-coupling convention ~40!, with
MK,p,q5MK(dp,Pdq,Q1dp,Qdq,P).# In order that theck be-
have like the Fourier amplitudes of a real fieldc(x), the
complex conjugates of the above equations must also be con-
sidered.~See the related discussion in Ref.@18#.! One readily
verifies that those are compatible with the reality condition
ck*5c2k . Thus one actually considers the set of modes
k5$K,P,Q,2K,2P,2Q%.

Given the Fourier interpretation of theck’s, a natural sta-
tistic to consider isZ8^c(x)4&[^c4&; the associated kurto-
sis isZ̄c8^c4&/^c2&223. The detailed evaluation of^c4& in
terms of Fourier amplitudes is presented in the Appendix;
see Eq.~A11!.

The solvable special case is defined@15# by MK51,
MP521, MQ50, and Gaussian initial conditions@applied
independently to the real and imaginary parts ofck(0)# such
thatCK(0)52, CP(0)50, andCQ(0)51. Therefore, mode
Q does not evolve andcQ serves as a Gaussianly distributed
random frequency of a linear oscillator in whichcK and
cP play the role of coordinate and momentum. Kraichnan
provided the analytical solution for the second-order statis-
tics of both the exact dynamics and the DIA; Bowman
@41,42# found solutions for both the EDQNM closure and the
RMC @41,42#. For all of those, the asymptotic energies are
CK(`)5CP(`)5CQ(`)51 @CQ(t)[1# and a FD relation
holds. One finds~see the Appendix! that the exact kurtosis
evolves from its initial Gaussian value of 0 to an asymptotic
value of Z̄c51/3.

It is straightforward to evaluate Eq.~94!. It contains a
factor

2dk, p̄ , q̄1ck, p̄ , q̄52M p̄1Mk ~100a!

5~M p̄2M q̄ !1~M p̄1M q̄1Mk!. ~100b!

The last term vanishes by definition of the mode-coupling
coefficients for the model; the antisymmetry ofM p̄2M q̄

then leads toZk
c[0 for the steady states of both the DIA and

the ~DIA-based! EDQNM. That the DIA-based approxima-
tions predict no non-Gaussian correction even for such a
simple model is a further illustration of the result of Chen
et al. thatZDIA is inadequate as a general prediction of non-
Gaussian statistics.

VI. DISCUSSION

This work is intended to unify a variety of approaches to
the calculation of various non-Gaussian statistics of nonlin-
ear systems. The principal formula, Eq.~36!, generalizes to

inhomogeneous situations the result of Chenet al. @4# for the
DIA to the general fourth-order statisticZ defined by Eq.
~2a!. I showed howZDIA follows naturally from the MSR
formalism for the statistical dynamics of classical fields. I
emphasized that the original Langevin representation of the
DIA due to Leith and Kraichnan is valid only through second
order. ~This point was no doubt well understood by those
authors, but it is worth reiterating to a more general audi-
ence.! I argued that the modified Langevin representation
~46! could be specified in such a way that purec statistics
could be reproduced up to and including a chosen order. The
important conceptual point was the extra freedom introduced
by the addition of an additive non-Gaussian correctionc0 to
the original product form of the noise. I sketched the calcu-
lation of the third- and fourth-order constraints linking the
two independent fieldsc0 andDj. Finally, I derived a Mar-
kovian representation forZDIA and illustrated its use with a
simple solvable three-mode model.

In conclusion, I emphasize the points made in the first
several paragraphs of Sec. I. The extent to which moment-
closure-based approaches to higher-order statistics are useful
for models of nonlinear systems with low degrees of sym-
metry ~typical of fusion-plasma applications, for example!
remains to be seen. Certainly the results of Chenet al. @4#
and of Sec. V show definitively that they are not adequate in
general. The development of better yet workable PDF-based
approximations presents an important challenge for the fu-
ture @8#.
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APPENDIX: EVALUATION OF Šc4
‹ FOR SYSTEMS

OF THREE COUPLED MODES

The derivation of formula~A11! for ^c4& in terms of
Fourier amplitudes involves a few subtleties, particularly in
the context of three-mode dynamics. I therefore present the
discussion in some detail.

It is useful to first review the straightforward evaluation
of ^c2&. One way of writing the convolution theorem for
fields real inx space is

@c2~x!#k5(
p,q

dk1p1qcp*cq* . ~A1!

For spatially homogeneous statistics, the ensemble average
may be supplemented or replaced by the spatial integral
L21*dx, which selects thek50 component:
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^c2~x!&5^@c2#k50&5(
p

^ucpu2&5(
p
Cp . ~A2!

Here the sums are over both positive and negative values of
p. (p50 does not contribute because it is assumed that
^c&5cp5050.) For later use, one has also

~A3a!

~A3b!

~A3c!

To evaluatê c(x)4&, one may write

^c4&5^~c2!2& ~A4a!

5(
k

^~c2!k~c2!k* & ~A4b!

5(
k

(
p,q

(
p8,q8

dk1p1qdk1p81q8^cp*cq*cp8cq8&.

~A4c!

Now focus particularly on the three-mode problem defined in
Sec. V. One must recognize that although the sums in Eq.
~104c! over p, q, p8, and q8 contain no zero component,
there is a k50 term @cf. Eq. ~A2!#. Furthermore, otherk’s

not included in the dynamically active spectrum contribute to
^c4&. For example, if one thinks ofK, P, andQ as vectors
rather than just mode indices, then the fundamental dynami-
cal triads areK1P1Q50 and (2K)1(2P)1(2Q)50.
Although such sums asK2P1Q do not vanish, beats such
ask5P2Q can contribute tôc4&. That is, thek summa-
tion in Eq. ~ A4c! is unrestricted, so it may be performed in
the conventional way:

^c4&5(
p,q

(
p8,q8

dp1q,p81q8^cp*cq*cp8cq8&. ~A5!

One may now systematically decompose the four sums into
all distinct possibilities. Since

(
p,q

5 (
p,q

p1q50

1 (
p,q

p1qÞ0

, ~A6!

one finds

^c4&5(
p

(
p8

^ucpu2ucp8u
2&1Q, ~A7!

where

Q8 (
p,q

p1qÞ0

(
p8,q8

p81q8Þ0

dp1q,p81q8^cp*cq*cp8cq8&. ~A8!

Upon separating off the terms withp85$p,2q%, one finds

^c4&52(
p

^ucpu4&1(
p

(
p8Þ$p,2p%

^ucpu2ucp8u
2&1Q,

~A9!

where

~A10a!

~A10b!
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The underlined terms vanish for homogeneous statistics
and one is left with

^c4&53S (p ^ucpu4&1(
p

(
p8Þ$p,2p%

^ucpu2ucp8u
2& D .

~A11!

Because for Gaussian statisticŝ ucpu4&52Cp
2 and

^ucpu2ucp8u
2&5CpCp8 ~for p8Þp), one verifies that formu-

las ~A11! and~A3b! are compatible with the Gaussian result

Z̄c50.
For the solvable model described in Sec. V, it can be

readily verified that

cK5Acos~ uVut !, ~A12a!

cP52S V*

uVu DA* sin~ uVut !, ~A12b!

cQ5V, ~A12c!

whereA andV are ~complex! Gaussian random variables
with ^uAu2&52, ^uVu2&51. With V5wexp(iw), expectations
can be computed with the PDFP(w,w)5p21w exp(2w2).
Although analytic forms for allt can be found, it is sufficient
here to calculate the long-time limits~with the aid of the
Riemann-Lebesque phase-mixing lemma!

CK5CP5CQ51, ~A13a!

^ucKu4&5^ucPu4&53, ^ucQu4&52, ~A13b!

^ucKu2ucPu2&5^ucPu2ucQu2&5^ucQu2ucKu2&51.
~A13c!

Upon inserting these values into Eqs.~A2! and ~A11!, one
finds ^c2&56, ^c4&5120, or

Z̄c51/3. ~A14!

The deviation from the Gaussian valueZ̄c50 arises here
from the non-Gaussian values of^ucKu4& and ^ucPu4& ~3
rather than 2!.
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