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Non-Gaussian statistics, classical field theory, and realizable Langevin models
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The direct-interaction approximatig®IA) to the fourth-order statistiz~((\ )2), where\ is a specified
operator andy is a random field, is discussed from several points of view distinct from that of €hah
[Phys. Fluids A1, 1844(1989]. It is shown that the formula faZ 5 already appeared in the seminal work of
Martin, Siggia, and RosgPhys. Rev. A8, 423 (1973] on the functional approach to classical statistical
dynamics. It does not follow from the original generalized Langevin equa@di) of Leith [J. Atmos. Sci.

28, 145(1971)] and KraichnarfJ. Fluid Mech.41, 189 (1970] (frequently described as an amplitude repre-
sentation for the DIA, in which the random forcing is realized by a particular superposition of products of
random variables. The relationship of that GLE to renormalized field theories with non-Gaussian corrections
(“spurious vertices’) is described. It is shown how to derive an improved representation, which realizes
cumulants througl®(y*), by adding to the GLE a particular non-Gaussian correction. A Markovian approxi-
mationZ“D"IA to Zpa is derived. BothZps andZ’[‘)"IA incorrectly predict a Gaussian kurtosis for the steady state

of a solvable three-mode examp|&1063-651X96)06705-0

PACS numbg(s): 47.27.Ak, 03.50-z, 05.40+], 52.35.Ra

I. INTRODUCTION magnetic field introduces a natural anisotropy. In a certain
useful limit, compressible, two-dimensional, anisotropic
The importance and utility of statistical closure approxi- fluid models of plasma result0,11].
mations applied to the nonlinear equations of field theory and | will describe the application ofp, to the analysis of
turbulence are by now very well establisHgg2]. For poly- ~ such models elsewhere. In the present work, whose goal is to
nomial nonlinearities, it was natural early on to seekclarify the conceptual foundations @&p,, | consider the
moment-based closur¢3]. Although usually those are used possibility of derivingZp,, by routes alternative to the one
to predict second-order statistics, certain of them can predidiased on the RCM. First, | observe in Sec. Il that the formula
higher-order statistics as well. In particular, Chetral. [4]  for Zpa [EQ. (36) below] is, in fact, contained in the seminal
used Kraichnan’s random-coupling modBICM) [5] for his  paper of Martin, Siggia, and Ro$®SR) [1], who presented
direct-interaction approximatio(DIA) [6,5] to derive a for- & renormalized theory of classical statistical dynamics based
mula for a general fourth-order statisie- ((\ ¢?)2), where  on functional manipulations. That work was not cited by
¢ is a random field) is a coupling coefficient that can be Chenet al, and indeed a close reading of a rather difficult
specified arbitrarily, and) denotes ensemble averafihe appendix is required in order to identify the result. Therefore,
precise definition o is given by Eq. 2a) below] Although | briefly review the MSR formalism, including some discus-
knowledge of statistics up to only fourth order is insufficient sion of the Bethe-Salpeter equatifit?,2] not given explic-
to reconstruct structures in space and therefore to fully chaitly by MSR. The formula foiZp,, then follows immediately
acterize intermittent phenomena, third- and fourth-order cuand elegantly, in a very general form valid for inhomoge-
mulants are natural and robust measures of the deviation #feous systemgot considered by Cheet al) and systems
the probability density functiotiPDF) from Gaussian form. of n coupled fields(a particular kind of “inhomogeneous”
Unfortunately, Cheret al. found that the non-Gaussian cor- Situation. The ease with which the formula emerges demon-
rections to a variety of important fourth-order statistics forstrates the power and beauty of the functional apparatus.
homogeneous, isotropic, incompressible Navier- Second, | consider in Sec. Il the predictiondimade by
Stokes turbulence vanish in the DIA; this led them to argughe Langevin model of the DIA presented by Left8] and
for the necessity of closures based on full PDF’s rather thail{raichnan[14]. Chenet al. noted in passing that a general-
moments. Shortly thereafter, the theory of “mapping clo-ized Langevin equation—schematica®/ *¢=b, whereR
sures” was invented7,8]. (response functionandb (random nonlinear noigeare de-
Although still in a relatively early stage of development, fined later—yields the formula foEZp,, for the particular
mapping closures appear to provide very successful and ircaseN =M, whereM is the mode-coupling coefficient for
triguing predictions[9] of a variety of non-Gaussian phe- the quadratic nonlinearity of the original primitive amplitude
nomena difficult to capture with moment closures. They mayequation. The operation that leads to that result—evaluating
become a central analytical tool for studies of intermittencythe mean square of the terms in the Langevin equation that
Nevertheless, the moment-based approximatihy, re-  represent the nonlinearity—has the advantage that it requires
mains of possible interest for situations with a degree ofonly the covariance of the random forcitg however, it
symmetry lower than that of the canonical three-dimensionatioes not immediately generalize to the case of arbitkary
homogeneous, isotropic, incompressible Navier-Stokes probAn alternative procedure is to average the fourth moment of
lem. The present work was motivated by problems of fusiorthe solution of the Langevin equation. That, however, re-
plasma physics, in which the presence of a strong confininguires the fourth-order cumulant of the non-Gaussiaiihe
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original formulation of Kraichnan, in which is represented Il. FOURTH-ORDER STATISTICS FROM
by a particular superposition of products of random variables THE MARTIN-SIGGIA-ROSE FORMALISM
cumuiant. fowever, 1 s easy to see that he result s not iy _FOIOWING MSR, let us restric our attention to quadratc
accord with the DIA statistics of fourth ordéwhere “DIA nonlinearities and consider a field equation of the form
stati_stics” aredefinedto bg thosg predicted.by the RCM or, (1) = U(1,2(2) — 1U5(1,2,3(2)¢(3)=U4(1).
equivalently, by renormalized field theory in the absence of 1)
vertex renormalization Indeed, the original Langevin model

fails already at third order. | show how a partial consistencyHere the argument 1 denotes the complete set of continuous
can be restored by the introduction of a particular non-and/or discrete independent variables, including, for ex-
Gaussian correctiotk. In preparation for that discussion, I ample, a space variablg, a time variabld,, and a discrete
briefly review the extensions to the original MSR formalism field label(“species” indeX s;; the integration and/or sum-
required by non-Gaussian forcing, random coefficientsmation convention for repeated indices is used. The set of all
and/or initial conditions. The Kraichnan model can then beindices excluding the time will be denoted by underlining the
clearly seen to be compatible with only tlsecond-order argument, e.g.1. For the time being, | take the coupling
statistics of the DIA,; it can be derived from a coupletar  coefficientsU; to be statistically sharp; a randody will be
system in the extended fiefb=(y,)" of MSR in the limit  important later. The two-point generalization of the defini-
of Gaussiarb. (HereT denotes transpose; the interpretationtion of Chenet al. is the fourth-order statistic

of the operatony is reviewed in Sec. I).The goal of repro- — —

ducing higher-order statistics from a dynamically linear Z(1,1,=(z(1,Hz(L1)), (28
Langevin model is more problematic. At higher order, which
requires non-Gaussialn, the effective equation of motion
for @ is intrinsically nonlinear and it appears to be impos- 2(1)=N(1,2,3%(2) $(3) (2b)
sible to determine the higher-order cumulantsbah a way

that reproduces the complete set of higher-order correlatioand where= indicates definition. Hera is an “external”
and response functions. However, if one is interested in reeoupling coefficient that can be specified arbitrarily; it
producing only pureyy cumulants but not higher-order re- should not be confused with the “internal” nonlinear mode-
sponse functions, it does appear to be possible, by introducoupling coefficientU;=M. | shall take\ to be local in
ing Yo andA&=§¢— iy, to specify the cross correlations of time—\(1,2,3)x 8(t; —t,) 8(t; —t;)—although this restric-
o with GaussianA¢ in a way that ensures that statistics tion is not used until the final step of the derivation and can
related toy® and ¢* are realized correctly by the model. be easily relaxed if necessary. Cleaxycan be taken to be
Nevertheless, the necessity for a non-Gaussian correctiogymmetric in its last two indices.

and, in general, a dynamically nonlinear model vitiates, in The fourth-order moment involved in,

my opinion, the utility and heuristic clarity of the Langevin - _

representation. Although the Leith-Kraichnan Langevin P4(2,3,23)=(#(2) h(3) () (3)), 3
equation is physically clear and compelling as a generator of

the DIA equations for second-order statistics, it still appeard'@S @ standard cumulant expansia]

that the RCM is the most fundamental amplitude representa- _
tion known for the DIA as interpreted to apply to statistics of Pa(1.234=({HDNEFNEHEONEHD))

where

all orders. DU U I ()
One application for which the Langevin approach is par- i _

ticularly well suited is the derivation of Markovian closures. + (five permutation

In Sec. IV, | show the equivalence between a direct Markov-

ian Ansatzapplied toZp, and a Langevin procedure. The (PN P(3)(4)))

application of the resulting readily computable formula to + (three permutations

interesting problems in plasma physics will be made else-

where. H((P(L)p(2))){(H(3) (4)))

Finally, | return in Sec. V to the solvable three-mode
model introduced by Kraichndri5] and briefly discussed by
Chenet al. The latter authors compared the prediction of +{{(P(1) p(2) P(3) p(4))). (4)
Zpa for the mean-square nonlinear term with the exact so-
lution of the model; they found reasonable agreement. | comAISo,
pute instead a kurtosis constructed in a natural way from the _
amplitudes of the three modes. In steady state, both the DIA {(D¥(2)- - h(m))=C(1.2,...n) ®)

and the Markovian approximation incorrectly predict a van-is the nth-order cumulant: in particular{(#))= () and
ishing non-Gaussian correction, emphasizing the inadequa(lep(l)lﬁ(z)»:<5¢(1)5¢(2)>EC(1 2), where Sy=

+ (two permutations

of Zp|a in general. _ o . —{(4). | assume ¢)=0, in which case
The body of the paper concludes with a brief discussion in
Sec. VI. The Appendix is devoted to the detailed construc- P,=PC+PC, (6)

tion of the kurtosis statistic in terms of Fourier amplitudes,
both in general and for the solvable model. where
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FIG. 1. Diagrammatic representation of tHestatistic.(a) Ex-
ternal coupling coefficienk (1,2,3);(b) primitive amplitudey; (c)
correlation functionC(1,1') and infinitesimal response function
R(1;1'); (d) fourth-order cumulan{{*)); () decomposition of
Z into a Gaussian pa#® and a cumulant pai®.

PC(2,3,23)=C(2,3)C(2,3)+ C(2.2)C(3,3)
+C(2,3C(3,2 )

generalizes the familiar resuty*) = 3(?)? for a univariate
centered Gaussian variabje and whereP°=((y") is the

fourth-order cumulant whose calculation is the goal. Dia-

grammatically, | represenk by a solid triangle,s by a
dashed line, the correlation functiéh by a wavy line, and
the nth-order cumulant by a box with dotted leggFigs.
1(a)-1(d)]. The decompositiorz=Z%+Z° induced by Eq.
(6) is then shown in Fig. (B).

MSR argued that the moment-closure problem for classi-

cal statistical dynamics was best addressed by a symmetrical, Gh h1,.2,.

“operator-doubled” formalism (a generalization of
Schwinger's approach to quantum field thefity]) that con-
sideredC and the infinitesimal response function

S(y(1))

RO= Sy |,

)

[Fig. 1(c)] on equal footing[Here &/ sh_ denotes the func-
tional derivative with respect to_ , an arbitrary, statistically
sharp source term added to the right-hand side of (Eq.
The significance of the- subscript will become apparent
shortly] To that end, they introduced the extended field
O=(y,)"=(P,,P_)T, wherey is an operator that can
be thought of 18] as — &/ 5 or as a momentum or Fourier-
transform variable in a path-integral representafiv@)]. Its
relationship toR will be described shortly; see E@L7). At
equal times and ¢ obey the canonical commutation rela-
tions

[(L0), (1, 1)]=6(1—-1") (93
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or
[®(1,t),D(1,1)T]=ig8(1-1"), (9b)
whereo is a 2X2 matrix in the spinor indices+,—)
0 1
ioc=| _1 o]- (10
The equation of motion compatible with E(.) is
o, (1) +U5(2,)9(2) +U3(2,3,D(2)(3)=0.  (11)

Equationg1) and(11) can be combinefll] into the symmet-
ric vector equation

—i0®(1)= y1(1) + 72(1,2P(2) + 3 73(1,23P(2)D(3),
(12)

where the arguments now include the spinor indices. Here
the nonvanishing elements of the fully symmetric matrices
v; (“bare vertices”) have precisely one minus index and are
defined by vy, (1)=U4(1), v»,_.(1,2)=U,(1,2), and
73_++(1,2,3):U3(1,2,3).

In the original paper of MSR, the right-hand side of Eq.
(12) was generated from the commutator @f with the
Hamiltonian functional

To(t)=P(1)[U1(1)+Ux(1,2 %(2)

+3U3(1,2,34(2)%(3)],

wheret; is not summed over. The generating functional

(13

S=[exp(@(1)h(1))]. (14
was then introduce@vhereh is a two-dimensional vector of
statistically sharp functions and the plus subscript denotes
time ordering with later times to the lgfand the finiteh
cumulants

" (153
=((®(1)P(2)- - () (15b)
_ o"In(S)
~8h(1)sh(2)- - - sh(n) (159

Gh(1.2,...n-1) (n>1) (15d)

~sh(n)

defined. The moment hierarchy of many-time correlation and
response functions was then generated by functional deriva-
tives with respect td of the averaged equation of motion

—i0G(1)=y1(1)+h(1)+ 75(1,2G(2)+ 1 y5(1,2,3

X[G1(2)G1(3)+G5(2,3)]. (16)
The physical observableggumulant$ are recovered in the
limit h—0; in that limit, Eq.(16) reduces to the average of

Eq. (12).
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FIG. 2. Diagrammatic representation of the MSR functidas.
Correlation matrixG(1,2); (b) bare vertex functiony(1,2,3); (c)
renormalized vertex functiof'(1,2,3); (d) mass operatok (1,2);
(e) vertex equation(f) interaction kernel; (g) DIA in matrix form;
(h) DIA as two coupled scalar equations f@randC.

The solution of Eq(12) in terms of time-ordered evolu-
tion operators and the definition of infinitesimal respons

functions in terms ofyy were discussed at length by Rose

[18]. The key technical result is thft 8]

R(1;1)=(((1) (1)) . (17)

The time-ordering convention ensures that any cumulant b
ginning with ¢ on the left will vanish; as a special case, it
guarantees causality of the infinitesimal resporRe:;t’)
«H(t—t"), whereH is the Heaviside unit step function.
Then the time-ordered two-point correlation matée G,
is built from justC andR:

). (18

Diagrammatically,G is represented by a heavy solid line
[Fig. 2(a)]. Higher-orderd® cumulants have natural physical
interpretations as well. For example,R(1;1',1")
={(p(1)P(1")p(1"))), is the “two in, one out” infinitesi-
mal response function.

More recently, Jensdri9], following earlier work by Jan-
ssen[20], DeDominicis[21], and Phythiaj22], discussed a

C(1,2
R(2;1)

R(1;2)

G<1.2>ﬁ<<<b<1><1><2>>>+=( 5
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F= .o+ (an initial-condition tern, (20b)
1
Ho= (D) + 712D (1)D(2)
1
+ 573(1,2,3343(1)@(2)@(3)-
(200

[In contrast to Eq(13), all times are integrated over in Eq.
(200.] This approach permits easy consideration of random
vertices and initial conditions. Further discussion of this
point is given in Sec. Il B 2.

For now, | continue to consider Gaussian initial condi-
tions and statistically sharp verticésnportant restrictions
that are relaxed in Sec. Il B)2Closure of the hierarchy of
moment equations in terms of the formally exact Dyson
equation forG is effected by changing variables fromto
F' (whereF=G,=(®)), best described formally in terms
of Legendre transformf23,2]. This leads to the natural in-
troduction of the(matrix) three-point renormalized vertex
function

5G1(1,2)

R CTED N

(21
(I now drop theh superscript where no confusion can afise.
eIt is readily shown that

I'(1,23=G6"%1,1G6"%2,2G 4(3,3G(1,23), (22

so I is fully symmetric; it is represented diagrammatically
by a large dot, whereas the bare three-point vestés rep-

er_esented by a small dgFigs. 2b) and Zc)]. One finds

G Y1,2=-i cré’tlﬁ(l— 2)— (1,2~ ¥(1,2,3(P(3))
+2(1,2), (23

where[24]
S(1)=-3%(1,23G(2,2G(3,3T(1,23) (24

[Fig. 2(d)]. Finally, an independent equation fbr follows
by functional differentiation of the Dyson equati¢23):

3= v3=14G,G,I'3 (25)
[Fig. 2(e)], where
L1 A 52(1’2)
14(1,2;1",2 )_—5G(1’ 2) (26)
, F

path-integral interpretation of the MSR formalism. This ap-
proach permits certain generalizations that are cumbersonj€ig. 2(f)]. RenormalizedEulerian statistical closures can

to treat by the MSR techniques as described by Rasé
Jensen showed, for example, that

7

Sl =S gpy D, (9
where
= In{exp7), (209

now be generated by approximating the interaction kernel
I=1,, which can be expressed as a power seriek [25].
The lowest-order closure

(27)

[Fig. 2(g)], is the most common formal definition of Kraich-
nan’s famous DIA, i.e., the DIA omits vertex renormaliza-
tion [5].

I~y
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FIG. 3. Two-particle scattering matrix and the Bethe-Salpeter
equation(a) Mass operatok (1,2); (b) Bethe-Salpeter equatioft)
DIA; (d) first vertex renormalization.

] ] ] FIG. 4. DIA contribution to fourth-order cumulan) G4 pja;

Although expressing all results in terms bf is often () 7, . ; (c) Fourier transform o, . Only the first term ofb) is
sufficient, the formul& = — 3yGGI is not manifestly sym-  shown explicitly; the other terms have identical structure.
metric. For many purposes, including a discussion of fourth-
order statistics, it is better to use the alternative, manifestlgingle lire... isequal t0G,(1,2,3,4) minus the last term in

symmetric representation discussed in Appendix A of Ref{gq, (30)].” Because those graphs are precisely the vertex

[1]: effects not contained in the DIA, it must be true that the last
S=—1yKy (29) term of Eq.(30) is (for I'— ) the DIA for G,:
2
[Fig. 3@], whereK, the “two-particle scattering matrix,” G4pa=GGyGyGG (31
obeys the Bethe-Salpeter equati@SE) [12,2]

[Fig. 4@)] [26]. Therefore, upon recalling Eq&2) and (6),

K=(GG)s—GGIK, (29 one obtains one of the central results of this paper:

where the subscrips denotes symmetrizatiofiFig. 3(b)].

Herel represents the intrinsic two-particle interactions, an- Zoa=AGGYGYGG\, (32)
other way of describing the effects of vertex renormalization.

The most symmetric formal way of introducing the variouswhere, by definition oZ as being proportional t@/*, the
terms in the BSE is again by means(bfo-poinf Legendre  \’s fix the outermost spinor indices to Be; internal indices
transforms[12,2]; however, | shall not review the details must be summed over. One may now recall thas fully
here since | need only the results, already presented by MSRymmetric, but nonvanishing only when precisely one of its
The DIA is1=0 orK=~(GG), [Fig. 3(c)]; the next approxi- indices is—. The complete set of diagrams that follow from

mation (first vertex renormalizationis |~—I'GI" [Fig. Eq. (32), taking account of the symmetries afand vy, is

3(d)]. The up-down connected nature bf a signature of shown in Fig. 4b). It is readily seen that these reproduce the

vertex corrections, will be important shortly. formula for Z° of Chen etal. More specifically, let
MSR show[their Eq.(A6)] that 1={x4,5;,t1} (ignoring, e.g., a momentum variable that

would arise, say, in a discussion of Vlasov turbulenees-
sume homogeneity in space, and Fourier transform. | use the
convention(compatible with statistical homogeneity

G4(1,2,34=2[05G5(1,2/5y2(3,4]6,~G2(1,4G2(2,3

—G2(1,39G2(2,4

+Go(1,1)G2(2,2T5(1,25)Gx(5,6) N2 =Ny=x,2-X), (333
XT'5(6,3,4)G2(3,3)G,(4,4), where
(30)
the interpretation of which igl] “the set of graphs involving N = exn(iD-p +id 0o e . 330
1, 2, 3, 4 that cannot be divided into two parts by cutting a (P1.p2) % PP 10:P2)hpg (33b)



4870 JOHN A. KROMMES 53

With this convention, the complete Fourier transform ofquence is that the three wave vectors entering a vertex must
N(X,Y,2) is sum to zero. Upon writing

~ R(s,t:s',t)=H(t—t")Ry(s,t;s',t") (35)

Npg= Ok+ ptahp,gs (34 ~
[R(t";t")=1, wherea®(t';t")=1/2], one then expands Eq.
where 6=y 5. | use the same convention fdt. A conse-  (32) to

Ziia(sis,t)= 42

'

C ,C

7

\2 N

[dkpq@abc a’,b")d} (S.a.bic’,a’b’)

cn:
2|

b
t t . J— ~
xf dt’j dt’Ry(a,t;a’,t")Cq(b,t;b’,t")Ci (¢’ t";c”, ’)R%(

0 0

+| dpq(S,a,b;c’,a’ b)ck—(s c ,a’,b")

t r__ . ~ —
xf dt’ft dt'Ry(a,t;a’,t")Cq(b,t;b",t" )R (¢, t';¢",t")Co(a,t;a’,t") Ci(b,t;b’,t")
0 0

[Fig. 4(c)], where of the MSR formalism. Thus one derives the single compact
formula (32) [first line of Fig. 4b)], which expands imme-

Ckpq(S,a,b;s’,a’,b")=N(s,k;a,p;b,)M* (s’ k;a’,p;b",0)  diately into Eq.(36) [second line of Fig. é)]. Of course, the

- - same features lead to the single matrix Dyson equdtidn

= Skt prahpg(S:2,0)MG ((s',a’,b"), which expands into two coupled scalar equationsGoand
(379 R [Fig. 2(h)]; likewise, > has several elements, one describ-

ing [29] emission 3, ), the other(typically) describing
absorption & __). The presence of both_, and> _, is
required in order that energylike conservation theorems can
- 5k+p+q pg(S:a, b)M Ka’,b’,s’), be maintained(For a discussion of this well-known point in

(37b  the context of plasma physics, see R&0].)

dipq(S:a,b;s",a’,b")=N(s,k;a,p;b,q)M*(a’,p;b’,q;s’ k)

and
IIl. REALIZABLE LANGEVIN MODELS AND THE DIA

Al A +A* ! .
pap( > =il paipa( ) papdS Sl (39 Although the DIA can be simply and concisely character-
In lieu of the preceding, relatively advanced discussionized as the absence of vertex renormalization, this does not
based on the Bethe-Salpeter equation, one may give the foR itself imply that the DIA is well behaved. Indeed, soon
lowing (equivalent derivation[27]. One hasG,= 6G3/éh after presenting the DIA, Kraichnan described a variety of
or [upon recalling Egs(22) and (15d)] “similar” renormalized closures that, although graphically
plausible, exhibited badly divergent behaviibt. He was led
to stress the importance of satisfying the infinity of realiz-
ability inequalitied 31] that moments of a PDF must obey. In
particular, he discussed the desirability of finding a stochas-
ST tic amplitude equation whose statistics precisely reproduce
=G3GGl'+ GGGl + GGG I+ GGG (39 those of the closure in questigat least through some order
An underlying amplitude representation guarantees that a
(Fig. 5). Upon considering the expansion &/ sh, one con- PDF exists, hence that the closure cannot violate the realiz-

cludes that all terms of Eq39b) except the first involve the
up-down connected paftGI', hence are absent from the
DIA [26]. ForI"~ v and with the aid of Eq(22), one verifies G = > < + I + M
that the first term of Eq(39b) is just formula(31). In that 4 ]
same approximation, the first three terms of E3Pb) are
well known in quantum field theory; cf. R€28], Fig. 6.1.1.
The simplicity of the derivations of either E(30) or Eq. + O(8I'/8h)

(39b) stems from two featuresi) the nature of cumulants as
functional derivatives andii) the symmetric, matrix nature FIG. 5. Contributions tdG,.

5
G,=5,(GGGI) (393
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(@ &=
® ve e o HEER N

FIG. 6. Original Langevin representation fgr. (a) Auxiliary
field &; (b) Langevin representation. + 1%

ability inequalities. For example, in a realizable closure co-
variances must remain positive definite.

Kraichnan showed that the DIA is derivable from several .
varieties of random-coupling mode[82,5,33, built most + %
fundamentally from an infinite number of copies of a random
amplitude equation stochastically coupled together in a par-
ticular way [5]. (Essentially, the mode-coupling coefficient
of the original quadratic nonlinearity is randomized, thus +
producing a model dynamical equation cubically nonlinear in
stochastic variables.Chenet al. used the RCM to derive
their result forZp, .

FIG. 7. Calculation o from the original Langevin representa-
A. The standard Langevin model for the DIA tion. The first two diagrams represent the Gaussian contribution; the

. - last two represent vertex corrections omitted in the DIA.
Some time after the original RCM was presented, a P

Langevin representation for the two-point Dyson equations

of the DIA was demonstrated by Leifd3] and Kraichnan C(1.1)=R(1L;DF(L1)R1"1), (433
[14]. For the specific, Fourier-transformed amplitude equa-
tion where
iy =1 ), Q-
W=t Ml i +he (@0 F1D=iM(1,23M(1.23C(22C(33; (43

. . this is the familiar spectral balance equation for the DIA
where vy represents linear physics arh denotes the sum  covariance2] [Fig. 2(h)].

over allp andq such thatk+p+qg=0, Kraichnan’s original At this point one must distinguish between two possible
form of the Langevin equation was interpretations of the “DIA”: either(i) the two familiar

_ coupled equations foR and C (second-order statistic®or
(e + vt 2%) =Ry " (418 (i) the renormalized closure that neglects vertex renormal-

ization. The latter interpretation is clearly the more general;
it admits the calculations of higher-order statistics, as we
have seen. However, while the Langevin mot#lb) suc-
cessfully reproduces the second-order statistics of the DIA, it
doesnotdo so for higher-order ones. The difficulty is already
whereX, is the nonlinear damping terd_, appearing in  present at third ordetsee Sec. Il D beloy but to make
the DIA, x denotes convolution in time, arglis a random immediate contact with the previous calculations, | consider
variable (not necessarily Gaussian, but independent/df the fourth order and calculai from Eq.(41b). This is easy
whose covariance is fixed to be that gfitself. It is readily  to do diagrammatically; see Fig. 7. The first two diagrams
shown that the second-order statistics of this amplitude repreduce, with the aid of the spectral balance equai®), to
resentation coincide with those of the DIA. To review thethe Gaussian contributions #; however, the last two dia-

=%§ My paés (1€ (1) +hy, (41b)

argument, one first notes that the result grams arenot equivalent to Eq(32). Indeed, the presence of
up-down correlations, or the fact that two horizontal lines
_y OP(t) , must be cut to bisect the graphs, identifies the last two dia-
R Sh(t’) =o(t=t') (42) grams as stemming from vertex corrections omitted in the

DIA. (There are other such vertex corrections of the same
(¢ is independent oh, since it is independent of") guar-  order that the present Langevin model does not predict.
antees that the infinitesimal response function of the model is The failure of Eq(41b) to successfully reproduce a speci-
that of the DIA. Next, the covariance equation is formed andied set of higher-order statistics is not surprising, since it
shown to agree with that of the DIA. Specifically, upon writ- was constructed with realizability of only the second-order
ing the solutionyy=R(3M£¢), shown diagrammatically in  statistics of the DIA in mind. Indeed, the PDF ¢f-M &2 is
Fig. &b), one finds a generalizegk? distribution—non-Gaussian, to be sure, but
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not the infinitely richer non-Gaussian PDF compatible withis also the question of whether the higher-order response

the DIA statistics through all ordef84]. functions (cumulants involving at least o) are properly
~ Chenet al. discussed a more general form of the Lange-dealt with. The most systematic way of treating all of these
vin model, issues is to employ the non-Gaussian version of the MSR

. formalism. | describe that briefly in the next section.
R™“y=b, (44)

) . ) o 2. Non-Gaussian effects in the MSR formalism

in which the covariance of the random forcitgis con-

strained to be The original work of MSR dealt only with Gaussian ini-

tial conditions(that restriction is perhaps not obvious, but
(b(1)b(2))=F(1,2), (45) see the paragraph just before Sec. Il of Ré&f) and statis-
tically sharp coupling coefficients. Modifications for non-
but is not required to be of product form. As discussed inGaussian initial conditions and random coefficients were de-
Sec. |, they showed that the mean square of the terms in Egcribed by Ros¢l18], Deker and Haakg23], Phythian[35],
(44) that represent the nonlinearity.e., b—>=x) repro- Deker[36], and Jensefil9]. Jensen’s work is perhaps the
duces formula(32) for the special casa =M. This is an most general; it embraces not only random initial conditions
important and necessary consistency check. However, théyut also random coupling coefficients of arbitrary order.
did not attempt a Langevin-based calculationZf, for ~ Rose[37] proposed an efficiently computable closure in

arbitrary \.. which the full time-history integrals of the DIA were re-
placed by truncated ones that explicitly allowed for non-
B. Generalized Langevin models, non-Gaussian statistics, ~ Gaussian effects. _ _ _
and effective equations of motion The original Langevin representation of the DIA provides

. . . a simple example of a random, non-Gaussian coupling coef-
| shall now discuss the possibility of generalizing the ficient. One can write Eq41b) in the form
Langevin model in such a way that higher-order statistics of

the DIA are predicted correctly. The attempt will not be en- 9p (1) = Uy(1,2)(2)=h(1)+ U(1), (47)
tirely successful, although it is instructive. The remainder of !

Sec. lll is rather technical; readers can skip, without loss ofpnere

continuity, directly to Sec. IV if they desire.

. . Ux(12=—[r(12)d(t;—tz) +2(1,2] (483
1. A non-Gaussian correction ==

It is useful to retain a nonlinear term of the product form describes both linear effects and the mean nonlinear damp-

(41b) because of its heuristic appeal. However, it is easy td"9: and

verify that such a term will not by itself generate the proper ~

higher-order statistics. To correct for the difference in non- Uy(1)=3U3(1,2,3£(2)&(3)=b. (48b)
Gaussian statistics, | introduce a new non-Gaussian random

variable i, statistically dependent o and satisfying Equation(47) has no term dynamically nonlinear ip; the
(o)=0, and write effect of the nonlinearity has been replaced by the random

(non-Gaussianforcing U4(1). It is anexample of a stochas-
=+ RIIM (&~ - 46 tic differential equation driven by non-Gaussian noise.
#= ¥t RLEZMUE= o) (6= o) (463 Generalizing earlier work of Rosgl8], Jensen[19]
or, With A= yp— iy and A é=&— iy, showed that for randord ; the Hamiltonian functional20a
becomes
RIAY=IMAEAE. (46b) _ .
H= T+ (), (49)
Here R is again the response function of the DIA. | now
redefine the model such that¢ (not &) is Gaussian with where the cumulant functional is given by
covariance fixed to that of (not A ). The statistical prop- L
erties ofi, are to be determined. That a representation of the oo e - ~ 0
form (46a (i.e.,  being the sum of two non-Gaussian ran- 5{1#}_,121 RS MU (50
dom variablesis possible is guaranteed if the statistical clo-
sure is realizable; one is thus fortunate in being aware of thand the “spurious vertices['18] (denoted by the superscript
RCM, which guarantees realizability of the DIA statistics 0) are
through all orders. _ _
The utility of the added freedom afforded by is appar- UO,. .. n=(U(1)---Us(n))). (52)
ent upon considering the evaluation ofy*)=((iq
+RIMA£2)%), which involves various mixed cumulants This results in a modified equation of motion derivable from
such ag(PoA£)), ((WoAE)), and((y2A£2)). One can at-  Ed.(12) by replacing 18] y,— y,+T{”, wherel'(?) is non-
tempt to assign consistent values to the-A ¢ cumulants in ~ vanishing only when all of its spinor indices are(in which
a way such that DIA statistics involving” (n< a fixed case its value i&)(?), thenth cumulant ofU,).
number such as)4are reproducedand also that the appro- The specific equation of motion that follows from Eq.
priate realizability inequalities are satisfletiowever, there (47) (for which y,-3=0) is

oo



53 NON-GAUSSIAN STATISTICS, CLASSICAL FIELD THEORY... 4873
. ~h (0) (0) h 1 (0) h h h 1 (0)
—ioG(1)=h(1)+T (1) +[v(1,29+T,7(1,2]1G1(2) + Erg (1,2,3[G1(2)G1(3) +Gx(2,3 ]+ §F4 (1,234

X[G(2)G1(3)G](4)+3G](2)G5(34 +G5(2.34]+ %Fé‘”(1,2,3,4,5[GT<2)G?<3)G?<4)G?<5)

+6G1(2)GN(3)Gh(4,5 +4G(2)G(3,4,5+3G)(2,3G5(4,5 +GH(2,3,4,5]+0O(T'Y), (52
where the complete symmetry Bt*) was used to combine some terms. The facts thaf' fRehave only— indices and that

cumulants with all— indices vanish identically foh=0 mean that the equation for the mean field is

0
—io(cb(1)>—y2(1,2)<cp(2)>=(<b>). (53

I shall take(b) =0, so consistentlyy) = 0. Higher-order cumulants follow in the usual way by functional differentiation of Eq.
(52). The covariance obeys

. 1 1
—i0GY(1,1)=6(1-1")+[y,(1,2+TP(1,21GH(2,1) + Erg")(1,2,3[2@2(2)@2(3,1’)+ GY(2,3,1)]+ 5rg°>(1,2,3,4

1
X[3G"(2)GN(3)GY(4,1)+3GY(2,3GH(4,1') +3GN(2)GY(3,4,1)+ G(2,3,4,1) ]+ Er<5°>(1,2,3,4,5

X[4GN(2)GN(3)GN(4)Gh(5,1) +6G(2)G(3)GlY(4,5,1) +4GN(2)Gl(3,4,5,1) +4G)(2,1)G)(3,4,5
+6Gh(2,3G(4,5,1)+Gh(2,3,4,5,1)]+O(TY). (54)

Upon settingh=0, one finds that the physical covariance matrix obeys

. 1 1
—10G(L1)=5(1- 1) +[72(1,2+I'P(1.2]Go(2.1) + 57T (1,2.3G5(23.1) + 57 15(1,2,34G4(234.1)

1 (0) (0)
+4778(1,2,3,4,565(2,34,5,1) +O(T¢). (55)

Upon recalling Egs(48), one finds that the{,—) compo- For Gaussiar, Uﬁ‘23=0 and the constraint58) is auto-
nent of Eq.(55) is matically satisfied.
For the Gaussian case, E¢56) follow from the effective
J . ;
ER+(v+E*)R= S(t—t") (569 equation of motion
—io®—(y,+TP)d=h (59

and the ,+) component is , )
or, in particular, forh=0,

9 . ~
EC+(v+E*)C=(<bb))RTr+A2, (56b) P+ (v+2x)=((bb)) ¢, (609
where g+ (v +3T%)9=0, (60b)
o a coupledlinear system. This is the dynamical linearity of
Ay(1,1)=2, ' ulo the original Langevin representation seen in another guise.
i=3 (N—1)! For non-Gaussial, linearity is lost, since higher-order
statistics are required. An effective equation of motion that
X(1,...nMG,_, —4(2,...01"). (57 includes the effect of the third-order cumulant is
The system(56) obviously reproduces the usual two-point gD~ (Y, T D —irPdd=h (61)
DIA equations if the covariance df is chosen according to
Eqg. (45) and if or, for h=0,

A,=0. (58) Y+ (v+3*) Y= ((bb))y i+ F((bbb)) s, (62
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along with Eq.(60b). The nonlinear structure of this coupled U, ... =R HN((1)...4(n))). (63)
system is qualitatively different from the previous linear one.

It would appear that the nonlinearity inherent with non- Constraints such a&68) thus relate products of correlation
Gaussiarb precludes a linear Langevin model of the form and response functions of different orders, but in a way that
R™1y=b that will faithfully reproduce all DIA correlation does not appear to be compatible with the dynamics of the
and response functions through any given order higher thaBIA itself.

second. Difficulty arises from the constraif8) and from A further example of such constraints emerges from the
additional constraints to be identified shortly. The linear re-equation forG; that follows from Eq.(54). Upon again re-
lation »=Rb meang from Egs.(48b) and(51)] that calling thatI'(?’) has all— indices, one finds foh=0

—i10G3(1,1,1)=(y,+T)(1,2G5(2,1,17) + 3T 9(1,2,3[2G,(2,1')G(3,1') + G4(2,3,1,1") ]

1
+ 5rﬁf”(1,2,3,4[362(2,1')G3(3,4,1') +3G,(2,1)G5(3,4,1)+G5(2,3,4,1,1")]

1
+ Erg°>(1,2,3,4,5[4c32(2,1')G4(3,4,5,1')+4GZ(2,1”)G4(3,4,5,I)+6Gs(2,3,1')G3(4,5,1")

+6G,(2,3G4(4,5,1,1") +Gg(2,3,4,5,1,1") ]+ O(T'Y). (64)

The predictions of this equation must be compatible with _ n REIMAZA L))+ ((REMA £A
the already-known DIA resultsee Eqs(22) and (27)] (9= (oo +(vho(Ra 88) (R £A8)10)

+((RZMAEAE)(RZMAEAE)) (66)

G3=G2G2Gay (65 [Fig. 9b)]. It is convenient to normalizeéy, such that

[Fig. 8@]. This sets values for the three independent third- (Yotho)=(v4)=C. 7

order cumulants3s .+, Gay 4, andGg, — [Fig. 8D)];  The sum of the last three terms on the right-hand side of Eq.
recall that Gz vanishes identically. The appropriate gg) must therefore vanish; this provides a constraint on the
components of Eq(64) lead, with the aid of the already thjrg-order multivariate statistics af, andA¢:

determined resul45), to equations that are compatible with

Eq. (65) only if new constraints on thEﬁO) are satisfied. |

will not write those out in detail, but again it does not appear

that they are compatible with the dynamics of the DIA. (a) j

One concludes, then, that a linear Langevin model of the
form R™Yy=b is too simplistic to capture all features of the
DIA (i.e., statistics of both fluctuations and response through

all orders, no matter what the statistical distribution lofis.

However, one may pose the restricted question of whether an (b) + . + +
appropriate representation bfcan reproduce puré¢ statis- -

tics through a given order. This question can be answered in

the affirmative, since one knows from the RCM that the DIA

statistics are realizable and in the linear Langevin model one .

has b« . In the following section, | comment briefly on

how the representatio@6) can be used to efficiently deter- * ~ +
mine Langevin constraints compatible with low-order DIA

statistics.

C. Second-order statistics +%§< -
Although we are ultimately interested in fourth-order sta-
tistics, it is useful to illustrate the formalism and to derive )

some necessary results by first considering the second- and

third-order statistics of, given the decompositior46). FIG. 8. Third-order cumulants in the DIAa) Exact expression
Upon denotingy, by a dashed line, one can represent EQ.G;=GGGI" and its DIA approximatiorG;~GG Gy; (b) nonvan-
(4639 by Fig. 9a). One has ishing components o5 in the DIA.
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+12
(©) < e > = VUV +< “““ > +2 terms
<o > = VVUW© £
- Y2 Y

FIG. 9. (a) Diagrammatic representation of the decomposition
= o+ RIMAEAE [Eq. (463] (in contrast to Fig. 6, the dotted
line now stands foA ¢); (b) associated covariancé;) constraints
through second order.

FIG. 10. Third-order cumulant of the decompositict): all
possible graphs.

that the covariance matrix should be positive semidefinite.

(po(D(RZMAEAE)(1'))+(1-1")=-C(1,1), 68 Explicitly, with the aid of Eqs(67) and(71), one finds
2
where the right-hand side follows from the definition of the o (o AE) ) = (o) <¢0A2§> (723
model[see discussion after E¢46b)], so that the last term Ag|TO (Aéyo) (A&

of Eq. (66) evaluates to the right-hand side of the spectral
balance equatiof439. It is typical of this kind of order-by- c c
order constructive approach that constraints at a given order B

need not fully determine the cross correlations betwggn _< ) ’
andA¢&. Thus Eq.(68) determines only a contractidmvith

M) of (oA EAE). Later, | will argue that at fourth order one jeany the realizability inequality is marginally satisfied.

will require the more detailed condition The constraints deduced so far are diagrammed in Fig.

cC C (72b)

. —_ — = — 9(0).

($o(1)AE(2)A4(3)) = —3R(1;)M(1,2,3)C(2,2)C(3,3);
(69) D. Third-order statistics
see the discussion of E(77). This satisfies Eq68) because One can now proceed to third order. One has schemati-
of the spectral balance equati¢fd). cally
The argument thus far has not determidedA £). Let us
demand that (P2 =3+ 3(PARIMAEAE)) + 3(ho(REMAEA £)?)
(ypAg)=C. (70 +{(RIMAEAE)3). (73

Upon multiplying Eq.(463 by A¢, averaging, and recalling Let us choose
that A¢ is Gaussian, one therefore obtains the constraint
(oA &%) =0. (74)
(oA é)=C. (71)
This turns out to be adequate for calculating statistics up to
As a check, the second-order realizability inequalities forfourth order. Equatior{73) is represented diagrammatically
o andA £ should be satisfied. These reduce to the statemen Figs. 10 and 11. Those diagrams are to be compared with
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+ 2 terms

Ya
%)

%)

FIG. 11. Average of Fig. 10.

those of the DIA, which at third order redd;= GGGy or
()= RMCC+ (two permutations)[Figs. 8 and 1@)].
One can achieve agreement by choosing

(P3)=—((RIMAEAE)®) (753
and

((PothoAEAE))=0. (75b)

The constraints deduced at this order are graphed in Fig.

12(b).

E. Fourth-order statistics

Finally, at fourth order one has
(= () + MY REMAEAE)) +6(y3(REMAEAE)?)

+A(Po(RIMAEAER) +((REMAEAHY.  (76)

JOHN A. KROMMES

(@) LBM<YP>= V5 00— + 0%y

(b)

FIG. 12. (a) Contribution 3M(°) to the covariance equation;
(b) a consistent choice of cumulants.

The remaining horizontal terms, involviR@/3A £) [cf. Fig.
13(d)], reproduce the second group of terms in Figh) 4f

(0(2) ho(2)AE(3))=C(1,)C(2,2M(1,2,3)R(3,3.
(78)

[Recall the discussion of E¢69).]
Not shown in Fig. 13 are diagrams that stem from the
original Langevin model withy,=0. The freedom afforded

v
() @

Evaluation of the ensemble averages leads to a somewhat
tedious proliferation of diagrams, representative ones of
which are shown in Fig. 13. The first three terms of Fig.
13(a) are, of course, the Gaussian contributiong #4). It

can be verified that the remaining disconnected diagfams
example is shown in Fig. 1B)] sum to zero upon invoking
Eqg. (69) and the spectral balance equati@3). The class of
(horizontally aligned terms that can be bisected by a single
vertical cut is obviously related to the desired regfig.
4(b)] for {(y*))pa. Of those terms, the ones involving
(oA €3 [cf. Fig. 13c)] will reproduce the first group of
terms in Fig. 4b) if

(Po(1)AE(2)M(3,4,9A8(4)AE(5))
=C(1,49C(2,5M(3,4,5.

(d)

\
\
\
\
/
/
B

FIG. 13. Representative diagrams arising from the fourth-order
average of the decompositio@6). () Expansion of(y¢) into
Gaussian and cumulant contribution®) example of a discon-
nected diagram(c) typical term arising from(yA £3); (d) typical

(770 term arising fromX $3A£).
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by the presence ofl, is now crucial, as one can choose t . - -
((43)) to cancel the unwanted terms. | do not present the 9k,p,q(t)ifodt'Rk(t;t’)Rp(t;t')Rq(t;t’) (813
details.
At this point, a variety of constraints on the cumulants of t—oo
o andA £ have been deduced. In principle, it is necessary to — [1(20) + mp() + ()]
verify that the relevant realizability inequalities are satisfied; (81b

this has not been done beyond second order. However,
remarked earlier, the freedom afforded by the addition o

o means that a construction of this type is guaranteed to M= vt s (82
exist, since the DIA is itself realizable through all orders due
to the existence of the RCM. 77, being nonlinear damping that is specified in E8j7) be-

This kind of construction guarantees that the linearlow. In Eq. (803, the Re operator is superfluous because of
Langevin equation augmented with an additive non-Gaussiathe restriction to Hermitian linear damping. | retain complex
correction will succeed in reproducing statistics through 6 in order to define a naturghlthough problematic; see the
fourth order. However, as discussed in Sec. Il B 2, such garagraph after Eq87)] generalization.
dynamically linear construction appears to be incapable of In order to determine amy,, compatible with Eq.(803),
reproducing higher-order response functions such asote that one has

R(1;1',17). . :
(O (1)) =2F (1) s(t—t"), (83
IV. MARKOVIAN APPROXIMATIONS TO  Zpa where

I now discuss approximate evaluations of E8R). Com-
putationally, the principaland well-known drawback of the Ft)=3> [M k,pyq|2Re0kypvop(t)Cq(t). (89
DIA is the necessity of evaluating the time-history integrals. A
Various parametrizations of the two-time observables hav h
been suggested; for a single field variable, one simple and
frequently used one is

o ~ .
(o) = | dOREDRO) @59
t L ) — 0
Rk(t;t’)wH(t—t’)exr(—Jt,dtnk(t)), (793

0 t>t’
={ (=19 (85b)

Fu(t) (t=t).

The t>t’ part of this result guarantees that a fluctuation-

The latter approximation is the fluctuation-dissipati®D)  dissipation relation holds. The=t’ result leads to the spec-
Ansatz known to be exact in thermal equilibriuf88]. Mar-  tral evolution equation

kovian approximations to the equal-time statistics can be ob-
tained by inserting thes@nsdze into the DIA equations.
However, a well-knowr39] difficulty with this procedure is
that the resulting equation for, need not be realizable.
[This deficiency is related to the fact that, although the triadrom which it follows that quadratic invariants of the primi-
interaction timed, , , defined in the next paragragfully  tive equation are conserved by the nonlinear terms if
symmetric ink, p, andq) appears correctly in the1 covariance
equation, the asymmetric construction,(- n,) = appears ~ *
in the equation fory,.] Instead, it is better 1o generate the G % Micp.aMp.aihcpaCalt) @)
Markovian approximation from a Langevin amplitude equa- ) _
tion, thereby ensuring realizability. Equations(87), (84), and_(86)_def|ne the so-called “DIA-
Kraichnan[40] showed that for single-field problems with based EDQNM” approximatiori41,42, henceforth called
Hermitian (rea) linear dampingyy, a realizable Markovian Simply EDQNM (where EDQNM stands for eddy-damped
approximation to the second-order statistics can be generatégiasinormal Markovian Bowman [41] has reviewed the

from the Langevin equatiof.3] history of this approximation in detail.
In the presence of linear waves (#¥0), Bowman

1 [41,42 demonstrated that the transient evolution described

+ () = —=w(t) > My p.qVRE0k 5 o() &5 (1) 5 (1) by the EDQNM is nonrealizable, possibly precluding the
V2 A - achievement of a realizable steady state. He showed that a

(808  realizable Markovian closuréRMC) can be developed if a

particular symmetrical form of the fluctuation-dissipation re-

=fi (1), (80b) lation is employed. The RMC is constructed to approach
asymptotically the steady-state spectral intensities of the

wherew(t) is Gaussian white noise with unit strengthjs EDQNM. Predictions of the RMC have been compared suc-

interpreted in the same way as in E41b), and 6, 4 is the  cessfully to direct numerical simulations of three-wave mod-

triad interaction time els [41,47, Hasegawa-Mim&g10] dynamics[43,44), and

Cu(t,t ) ~Ry(t:;t")Cy(t,t)  (t=t"). (79b)

d
ECk-i- 2(Ren,) Cy=2F, (86)

2
ot



4878

Hasegawa-Wakatar{ill] dynamics[45,46. The resulting
7’s and C,’s can be used in conjunction with EGZ9b) to
estimateZ® according to Eq(36).

The formula for the Markovian approximation to the
steady-stat&® can be derived in two waysi) by inserting
the form (79b) directly into Eq.(36) and evaluating the re-
sulting integrals andi) by noting that the Langevin equation
(80b) follows from representatio®d1b) when theM of the
latter is replaced by

M —26wM.

The two derivations are almost identical. | restrict my atten-
tion to single-field problems. Considering first proced(ije

| introduce the variables=t—t’ andr=t—t’ and write the
steady-state form of Eq36) as

(89)

ol _
ZB k=

4p2q 2 {dp sl i(kip.gp.g)
) Ra

+dipCipg!s (kpap.a)]™, (89)
where
I (K;p,q;p, Q)= Jo dTJO dT_Ieip(T)Cq(T)
X C( 7= T)RHTCH(7),
(90a
1(k;p,q; p,0) = f , 97 f . d7 Cy(7)Cq(7)
XR(7=7) %(_) (7).
(90b)
Upon introducing the FDAnsatz one finds
1,(k:p.G;p.0) =CC,Cql2(kip.ap@), (92

whereC,=C,(7=0) is the steady-state intensity and

Ta(kip,ap,0)= f:dr fofdr_ﬁep( IRy(7)

X R 7= T)RE(T)RE(7).

(92

Upon writing [{d7= f{d7+ [ “d7 and reversing the order of
integration in the second term, one also finds

11(k;p,g;p.q)=CoCiCq [12(k;p,q;p, @) + 15 (K;p,ap. ) .

(93
Then

Ze)

Lo k= pz EECqu_RG{(de,p,qd:,ﬁck

+dy p,oCi 53 Col2(Kp. AP ) 1. (94
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This formula holds for any steady-state DIA solution with a
FD relation. For the specific parametrizatioR,(7)
=exp(—n7), one readily finds

1,(K;P,G;P,Q) = Oy p.q/ A7, (95)

where

An= Npt Nt 77%4— 77:*. (96)
Formula(94) will be evaluated for a special solvable model
in Sec. V.

Turning now to proceduréii), the modification(88) of
‘the bare vertex functiofimode-coupling coefficiehtcan be
used to define a Markovian Langevin model for higher-order
statistics in the same way as in Sec. lll. If one does so, the
diagrammatic analysis of Sec. Ill goes through unchanged
[with the new interpretatiof88) for the vertice$ one is led
to a formula like (36), except that extra factors of2 6w
appear inside the time integralsne evaluated &t’, one at
t ') and the average over the white noise must be performed.

That average produces the fact(t—t')= 8(r— 7). What
results for the steady state is

Z5R =4 2 %2\/Hk,p,q\/ek,ﬁ{dk,p,qd:,ﬁl1(k;p:q;m
+dpaChpgl 2Kpa P ], (97)
wherel/ are the integrald; with the terms with argument

r— 7 replaced by a delta function of that argument. One
readily finds

li=A7"Y y=2Ap~? (99)
(the factor of 1/2 inl, arises from integrating the delta func-
tion over half of its suppojt This leads to a formula that is
identical to(89) with Egs.(91) and(95), except that , 4 is
replaced byy 6y , 4V 0k pg- The formulas are identical when
only a single triad interaction time is relevant, as in the three-
mode model discussed in Sec. V.

For problems with multiple coupled fields, the derivation
of realizable Markovian closures is more intricate. The dif-
ficulties and various remedies are described in detail by
Bowman[41] and Bowmaret al.[42].

V. FOURTH-ORDER STATISTICS FOR SYSTEMS
OF THREE COUPLED MODES

The study of simple nonlinear models that nevertheless
retain the essence of the statistical closure problem has been
very profitable[5,2]. Kraichnan[15] considered a simple
system of three coupled modes in order to compare the per-
formance of the DIA(for second-order statistigsvith exact
ensemble-averaged solutions of the equations of motion.
Krommes[47] extended that work to include linear forcing
and damping; see also R¢#2]. Kraichnan also discussed a
degenerate case of the three-mode problem that could be
fully solved analytically, both for the exact equations and for
the DIA. Further results on that solvable case were given by
Bowmanet al. [41,42. Chenet al. discussed the prediction
of Zpa for the mean-square nonlinearity.
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Here, | briefly consider for pedagogical purposes a slighinhomogeneous situations the result of Cle¢l. [4] for the
variant of Kraichnan’s solvable three-mode model that proDIA to the general fourth-order statisti¢ defined by Eq.
vides a simple example of the development of non-Gaussia(®a). | showed howZp,, follows naturally from the MSR
kurtosis from Gaussian initial conditions and allows an illus-formalism for the statistical dynamics of classical fields. |
trative test of the DIA and Markovian formulas f@f. The  emphasized that the original Langevin representation of the
fundamental equation of motion for three fields labeled byDIA due to Leith and Kraichnan is valid only through second

K, P, andQ is taken to be order. (This point was no doubt well understood by those
. - authors, but it is worth reiterating to a more general audi-
=M ip g, (99  ence) | argued that the modified Langevin representation

(46) could be specified in such a way that pufestatistics
could be reproduced up to and including a chosen order. The
important conceptual point was the extra freedom introduced

with two similar equations for the cyclic permutations
K—P—Q—K. [Equation(99) is compatible with the fun-

damental ~ mode-coupling ~ convention (40),  with e addition of an additive non-Gaussian correciigrto

Mk p.q=Mk(8p,pd4,0+ Sp,d,p).1 In order that thejy be-  q original product form of the noise. | sketched the calcu-

have like the Fourier amplitudes of a real fieJdx), the  |ation of the third- and fourth-order constraints linking the

c_omplex conjugates of thg abovg equatlons must also be R0 independent fieldg, andA¢. Finally, | derived a Mar-

sidered (See the related discussion in REif8].) One readily  qyian representation faZp;, and illustrated its use with a

verifies that those are compatible with the reality Cond't'onsimple solvable three-mode model.

Y =#_x. Thus one actually considers the set of modes | conclusion, | emphasize the points made in the first

k={K,P,Q,-K,-P,—Q}. several paragraphs of Sec. I. The extent to which moment-

_ Given the Fourier interpretation of thg's, a natural sta- - ¢losure-based approaches to higher-order statistics are useful

tistic to consider iZ=(y(x)*)=(y"); the associated kurto- for models of nonlinear systems with low degrees of sym-

sis isZ°=(y*)/(4?*)*~ 3. The detailed evaluation ¢f/*) in  metry (typical of fusion-plasma applications, for example

terms of Fourier amplitudes is presented in the Appendixremains to be seen. Certainly the results of Cheal. [4]

see Eq(All). and of Sec. V show definitively that they are not adequate in
The solvable special case is defingtb] by Mx=1, general. The development of better yet workable PDF-based

Mp=—1, My=0, and Gaussian initial conditiorfgpplied  approximations presents an important challenge for the fu-

independently to the real and imaginary partg/f0)] such  ture[8].

that C¢(0)=2, Cp(0)=0, andCy(0)=1. Therefore, mode

Q does not evolve ang, serves as a Gaussianly distributed

random frequency of a linear oscillator in whigh and ACKNOWLEDGMENTS
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factor

2dp,q7 Cip,g= 2Mp+ My (1003 APPENDIX: EVALUATION OF (%) FOR SYSTEMS

OF THREE COUPLED MODES
=(My—=Mg +(Mg+Mg+M,). (100b
The derivation of formula(A11) for (%) in terms of
, _ . Fourier amplitudes involves a few subtleties, particularly in
The last term vanishes by definition of the mode-couplingihe context of three-mode dynamics. | therefore present the
coefficients for the model; the antisymmetry Bf;—MG5  {iscussion in some detail.
then leads t@y=0 for the steady states of both the DIAand |t is useful to first review the straightforward evaluation

the (DIA-based EDQNM. That the DIA-based approxima- of (y?). One way of writing the convolution theorem for
tions predict no non-Gaussian correction even for such felds real inx space is

simple model is a further illustration of the result of Chen
et al. thatZp,, is inadequate as a general prediction of non-
Gaussian statistics.

[V2000= 2 Scrpalfp 05 - (A1)
VI. DISCUSSION

This work is intended to unify a variety of approaches toFor spatially homogeneous statistics, the ensemble average
the calculation of various non-Gaussian statistics of nonlinfmay be supplemented or replaced by the spatial integral
ear systems. The principal formula, E&6), generalizes to L~ !fdx, which selects th&=0 component:
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) 5 5 not included in the dynamically active spectrum contribute to
(WP =([# o) =2 ([Pl =2 Cp.  (A2) (). For example, if one thinks df, P, andQ as vectors
P P rather than just mode indices, then the fundamental dynami-
Here the sums are over both positive and negative values & triads areK+P+Q=0 and (-K)+(—P)+(-Q)=0.
p. (p=0 does not contribute because it is assumed thaflthough such sums & —P+Q do not vanish, beats such

()= ,_,=0.) For later use, one has also ask=P—Q can contribute td*). That is, thek summa-
P tion in Eq. ( A4c) is unrestricted, so it may be performed in

the conventional way:
(=2 2 C,C, (A33)
e (=2 2 Sprap o (Vs o). (AS)
1 pqg
=22, 2+ X C,C,  (A3Db)
14

P p'#{p,-p}

=4 (;0 c2+33 cpcp,) .

One may now systematically decompose the four sums into
all distinct possibilities. Since

(A30) =2 + ;} : (AB)

p>0p'>0
N’ p.q pqu:o oriko
p'#p
one finds
To evaluatg(x)%), one may write WH=> <|l//p|2|¢/p/|2>+Q, (A7)
p ’
(W =((")?) (A4a) P
where
=2 ((PWPF) (A4b)
k Q= X X Spiqpa{Up¥itoty). (A8)
p'q plvq!
PHa*0 % s
= 5 5 ’ ’ * ot ’ ).
; ;1 qu crpradicrp+a (Vp Yo ¥ dar) Upon separating off the terms wifh' ={p,—q}, one finds

(Adc)

Now focus particularly on the three-mode problem defined in <‘/f4>:22 <|’/’p|4>+2 . E <|‘/’p|2|¢p’|2>+Q'
Sec. V. One must recognize that although the sums in Eq. P P op#ppl (A9)
(1049 overp, q, p’, andq’ contain no zero component,

thereis a k=0 term[cf. Eq. (A2)]. Furthermore, othek’'s  where

Q=2 52p,2p’<¢;<¢;<¢p’¢p'>+22 5p+q,2p’z <¢;<l//;k¢p'¢p’>
7 p P q#p p’

’

N o—
p+qg#0
+2 22 52p,p’+q’<l//;<‘//;<wp'¢q’>+22 EE 5p+q,p'+q'<¢;)k¢;kl//p'lpq’> (Aloa)
p pl qlipl p q#p p/ q'*p'
— — N “—, —
p'+q' #0 p+q#0 p'+q’'#0

=§ <|¢pl4>+p2q¢2p Z 6p+q,2p’<¢;¢;¢p’¢q’>+2 EE 52p,p’+q’<¢;<¢;<¢'p’lr//q’>
p e 4 r 17 P AR SR S S

P p'q'#p’

N o—
— —
ptg#0 p'+q'#0

2 2 Allodh+2 2 wlleh+2 2 Y2 G-

9 #p.=p} p'#{p.q} ¢ #{q.p.p"}

r}

(A10b)



53

NON-GAUSSIAN STATISTICS, CLASSICAL FIELD THEORY. ..

4881

The underlined terms vanish for homogeneous statisticashere A and () are (compleXx Gaussian random variables

and one is left with

>

p'#{p.—p}

<|¢p|2|¢p’|2> .
(A11)

(¥*)=3 % <|wpl“>+§

Because for Gaussian statisticg|y,|*)=2C> and
(|#pl?|¥pr1?y=CpCp (for p’ #p), one verifies that formu-

las (A11l) and(A3b) are compatible with the Gaussian result

Z°=0.

For the solvable model described in Sec. V, it can be

readily verified that

P=Acog|Q[t), (A123)

QF ]
Yp= —(@)A*smmt), (A12b)
b=, (A120)

with (JA|2)=2, (|| =1. With Q=wexp(¢), expectations
can be computed with the PDIF(w, @)= 7w exp(—Ww?).
Although analytic forms for aft can be found, it is sufficient
here to calculate the long-time limitsvith the aid of the
Riemann-Lebesque phase-mixing lemma

CK:CPZCQ: 1,
(el H=(lwelH=3, (|wql")=2,
(Qwl?lwel?y = (|l gl ) = (| ol * | ?) = 1.(A

(A133)
(A13Db)

130
Upon inserting these values into Eq#2) and (A11), one
finds (%) =6, (¥*) =120, or

Z°=1/3. (A14)

The deviation from the Gaussian val@&=0 arises here
from the non-Gaussian values ¢fyx|*) and (|¢p|*) (3
rather than 2
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